Suppr超能文献

在毕赤酵母中利用合成诱导型启动子变体实现猪胰蛋白酶原可变生产窗口。

Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris.

作者信息

Ruth C, Zuellig T, Mellitzer A, Weis R, Looser V, Kovar K, Glieder A

出版信息

Syst Synth Biol. 2010 Sep;4(3):181-91. doi: 10.1007/s11693-010-9057-0. Epub 2010 May 29.

Abstract

Natural tools for recombinant protein production show technological limitations. Available natural promoters for gene expression in Pichia pastoris are either constitutive, weak or require the use of undesirable substances or procedures for induction. Here we show the application of deletion variants based on the well known methanol inducible AOX1 promoter and small synthetic promoters, where cis-acting elements were fused to core promoter fragments. They enable differently regulated target protein expression and at the same time to replace methanol induction by a glucose or glycerol feeding strategy. Trypsinogen, the precursor of the serine protease trypsin, was expressed using these different promoters. Depending on the applied promoter the production window (i.e. the time of increasing product concentration) changed significantly. In fedbatch processes trypsinogen yields before induction with methanol were up to 10 times higher if variants of the AOX1 promoter were applied. In addition, the starting point of autoproteolytic product degradation can be predetermined by the promoter choice.

摘要

用于重组蛋白生产的天然工具存在技术局限性。毕赤酵母中现有的用于基因表达的天然启动子要么是组成型的、较弱的,要么需要使用不良物质或程序进行诱导。在此,我们展示了基于著名的甲醇诱导型AOX1启动子和小型合成启动子的缺失变体的应用,其中顺式作用元件与核心启动子片段融合。它们能够实现对靶蛋白表达的不同调控,同时通过葡萄糖或甘油补料策略取代甲醇诱导。使用这些不同的启动子表达了丝氨酸蛋白酶胰蛋白酶的前体胰蛋白酶原。根据所应用的启动子,生产窗口(即产物浓度增加的时间)发生了显著变化。在补料分批培养过程中,如果应用AOX1启动子的变体,甲醇诱导前的胰蛋白酶原产量可提高至10倍。此外,自催化产物降解的起始点可通过启动子的选择预先确定。

相似文献

1
Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris.
Syst Synth Biol. 2010 Sep;4(3):181-91. doi: 10.1007/s11693-010-9057-0. Epub 2010 May 29.
4
Pichia pastoris Promoters.
Methods Mol Biol. 2019;1923:97-112. doi: 10.1007/978-1-4939-9024-5_3.
5
Recombinant shrimp (Litopenaeus vannamei) trypsinogen production in Pichia pastoris.
Biotechnol Prog. 2009 Sep-Oct;25(5):1310-6. doi: 10.1002/btpr.197.
7
Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter.
J Biotechnol. 2001 Jun 1;88(1):21-35. doi: 10.1016/s0168-1656(01)00254-1.
8
pMOX: a new powerful promoter for recombinant protein production in yeast Pichia pastoris.
Enzyme Microb Technol. 2020 Sep;139:109582. doi: 10.1016/j.enzmictec.2020.109582. Epub 2020 Apr 22.
9
Promoter library designed for fine-tuned gene expression in Pichia pastoris.
Nucleic Acids Res. 2008 Jul;36(12):e76. doi: 10.1093/nar/gkn369. Epub 2008 Jun 6.
10
Regulation of Pichia pastoris promoters and its consequences for protein production.
N Biotechnol. 2013 May 25;30(4):385-404. doi: 10.1016/j.nbt.2012.11.010. Epub 2012 Nov 16.

引用本文的文献

1
Rational design and characterization of enhanced alcohol-inducible synthetic promoters in .
Appl Environ Microbiol. 2025 Jan 31;91(1):e0219124. doi: 10.1128/aem.02191-24. Epub 2024 Dec 19.
3
Functional characterization of the Komagataella phaffii 1033 gene promoter and transcriptional terminator.
World J Microbiol Biotechnol. 2023 Jul 8;39(9):246. doi: 10.1007/s11274-023-03682-5.
4
Engineering of Promoters for Gene Expression in Pichia pastoris.
Methods Mol Biol. 2022;2513:153-177. doi: 10.1007/978-1-0716-2399-2_10.
5
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up.
Microb Cell Fact. 2021 Jun 30;20(1):124. doi: 10.1186/s12934-021-01617-z.
6
Yeast Expression Systems: Overview and Recent Advances.
Mol Biotechnol. 2019 May;61(5):365-384. doi: 10.1007/s12033-019-00164-8.
7
Engineering of Yeast Glycoprotein Expression.
Adv Biochem Eng Biotechnol. 2021;175:93-135. doi: 10.1007/10_2018_69.
8
Effects of glycerol supply and specific growth rate on methanol-free production of CALB by P. pastoris: functional characterisation of a novel promoter.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3163-3176. doi: 10.1007/s00253-017-8123-x. Epub 2017 Jan 27.
9
Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.
ACS Synth Biol. 2017 Mar 17;6(3):471-484. doi: 10.1021/acssynbio.6b00178. Epub 2016 Dec 14.
10
Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.
World J Microbiol Biotechnol. 2017 Jan;33(1):19. doi: 10.1007/s11274-016-2185-2. Epub 2016 Nov 30.

本文引用的文献

1
Real-time PCR-based determination of gene copy numbers in Pichia pastoris.
Biotechnol J. 2010 Apr;5(4):413-20. doi: 10.1002/biot.200900233.
2
An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris.
FEMS Yeast Res. 2009 Dec;9(8):1271-82. doi: 10.1111/j.1567-1364.2009.00571.x. Epub 2009 Aug 21.
3
Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris.
Biochim Biophys Acta. 2009 Jun-Aug;1789(6-8):460-8. doi: 10.1016/j.bbagrm.2009.05.004. Epub 2009 May 18.
4
Promoter library designed for fine-tuned gene expression in Pichia pastoris.
Nucleic Acids Res. 2008 Jul;36(12):e76. doi: 10.1093/nar/gkn369. Epub 2008 Jun 6.
5
High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris.
Appl Microbiol Biotechnol. 2006 Oct;72(5):1039-47. doi: 10.1007/s00253-006-0384-8. Epub 2006 Apr 7.
6
Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris.
Mol Cell Biol. 2006 Feb;26(3):883-97. doi: 10.1128/MCB.26.3.883-897.2006.
8
Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena.
FEMS Yeast Res. 2004 Nov;5(2):179-89. doi: 10.1016/j.femsyr.2004.06.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验