Suppr超能文献

利用症状监测数据估计几种感染的发病曲线。

Estimating incidence curves of several infections using symptom surveillance data.

机构信息

Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2011;6(8):e23380. doi: 10.1371/journal.pone.0023380. Epub 2011 Aug 24.

Abstract

We introduce a method for estimating incidence curves of several co-circulating infectious pathogens, where each infection has its own probabilities of particular symptom profiles. Our deconvolution method utilizes weekly surveillance data on symptoms from a defined population as well as additional data on symptoms from a sample of virologically confirmed infectious episodes. We illustrate this method by numerical simulations and by using data from a survey conducted on the University of Michigan campus. Last, we describe the data needs to make such estimates accurate.

摘要

我们介绍了一种估计几种共同传播的传染病发病率曲线的方法,其中每种感染都有其特定症状谱的概率。我们的反卷积方法利用了来自特定人群的每周症状监测数据以及来自病毒学确诊传染病例样本的附加症状数据。我们通过数值模拟和密歇根大学校园调查数据来演示这种方法。最后,我们描述了使这种估计准确所需的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d8/3160845/0158f15a6a93/pone.0023380.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验