Department of Neuroscience and Cell Biology, University Of Texas Medical Branch at Galveston, Galveston, Texas, United States of America.
PLoS One. 2011;6(8):e23414. doi: 10.1371/journal.pone.0023414. Epub 2011 Aug 24.
Fibroblast growth factor (FGF) and epidermal growth factor (EGF) are critical for the development of the nervous system. We previously discovered that FGF2 and EGF had opposite effects on motor neuron differentiation from human fetal neural stem cells (hNSCs), but the underlying mechanisms remain unclear. Here, we show that FGF2 and EGF differentially affect the temporal patterns of Akt and glycogen synthase kinase 3 beta (GSK3β) activation. High levels of phosphatidylinositol 3-kinase (PI3K)/Akt activation accompanied with GSK3β inactivation result in reduction of the motor neuron transcription factor HB9. Inhibition of PI3K/Akt by chemical inhibitors or RNA interference or overexpression of a constitutively active form of GSK3β enhances HB9 expression. Consequently, PI3K inhibition increases hNSCs differentiation into HB9(+)/microtubule-associated protein 2 (MAP2)(+) motor neurons in vitro. More importantly, blocking PI3K not only enhances motor neuron differentiation from hNSCs grafted into the ventral horn of adult rat spinal cords, but also permits ectopic generation of motor neurons in the dorsal horn by overriding environmental influences. Our data suggest that FGF2 and EGF affect the motor neuron fate decision in hNSCs differently through a fine tuning of the PI3K/AKT/GSK3β pathway, and that manipulation of this pathway can enhance motor neuron generation.
成纤维细胞生长因子(FGF)和表皮生长因子(EGF)对神经系统的发育至关重要。我们之前发现 FGF2 和 EGF 对人胎儿神经干细胞(hNSC)中运动神经元分化有相反的影响,但潜在的机制尚不清楚。在这里,我们表明 FGF2 和 EGF 对 Akt 和糖原合成酶激酶 3β(GSK3β)激活的时间模式有不同的影响。高水平的磷酸肌醇 3-激酶(PI3K)/Akt 激活伴随着 GSK3β失活,导致运动神经元转录因子 HB9 减少。通过化学抑制剂或 RNA 干扰抑制 PI3K/Akt 或过表达组成型激活形式的 GSK3β 增强 HB9 的表达。因此,PI3K 抑制增加了 hNSC 体外分化为 HB9(+)/微管相关蛋白 2(MAP2)(+)运动神经元。更重要的是,阻断 PI3K 不仅增强了 hNSC 移植到成年大鼠脊髓腹角后运动神经元的分化,而且通过克服环境影响允许在背角异位产生运动神经元。我们的数据表明,FGF2 和 EGF 通过精细调节 PI3K/AKT/GSK3β 通路,对 hNSC 中的运动神经元命运决定有不同的影响,并且对该通路的操纵可以增强运动神经元的产生。