Electrical Engineering Department, University of California, Los Angeles, CA, USA.
Ann Biomed Eng. 2012 Feb;40(2):251-62. doi: 10.1007/s10439-011-0385-3. Epub 2011 Sep 2.
Microfluidic devices aim at miniaturizing, automating, and lowering the cost of chemical and biological sample manipulation and detection, hence creating new opportunities for lab-on-a-chip platforms. Recently, optofluidic devices have also emerged where optics is used to enhance the functionality and the performance of microfluidic components in general. Lensfree imaging within microfluidic channels is one such optofluidic platform, and in this article, we focus on the holographic implementation of lensfree optofluidic microscopy and tomography, which might provide a simpler and more powerful solution for three-dimensional (3D) on-chip imaging. This lensfree optofluidic imaging platform utilizes partially coherent digital in-line holography to allow phase and amplitude imaging of specimens flowing through micro-channels, and takes advantage of the fluidic flow to achieve higher spatial resolution imaging compared to a stationary specimen on the same chip. In addition to this, 3D tomographic images of the same samples can also be reconstructed by capturing lensfree projection images of the samples at various illumination angles as a function of the fluidic flow. Based on lensfree digital holographic imaging, this optofluidic microscopy and tomography concept could be valuable especially for providing a compact, yet powerful toolset for lab-on-a-chip devices.
微流控设备旨在使化学和生物样本的操作和检测微型化、自动化和降低成本,从而为芯片实验室平台创造新的机会。最近,还出现了光流控设备,其中光学用于增强微流控组件的功能和性能。微流道内无透镜成像是这样的一种光流控平台,在本文中,我们专注于无透镜光流控显微镜和层析术的全息实现,这可能为芯片上的三维(3D)成像提供更简单、更强大的解决方案。该无透镜光流控成像平台利用部分相干数字线栅全息术来允许对流过微通道的标本进行相位和振幅成像,并利用流体流动来实现比在同一芯片上的静止标本更高的空间分辨率成像。除此之外,通过捕获作为流体流动函数的不同照明角度的样本的无透镜投影图像,也可以重建相同样本的 3D 层析图像。基于无透镜数字全息成像,这种光流控显微镜和层析术概念对于提供用于芯片实验室设备的紧凑但功能强大的工具集可能是非常有价值的。