Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
Biophys J. 2011 Sep 7;101(5):1175-83. doi: 10.1016/j.bpj.2011.06.056.
The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as k(a)=k(a0)exp(-ΔG(el)(∗)/k(B)T) where k(a0) is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (k(a0)) of EPO, IL4, hGH, and PRL were similar (5.2 × 10(5) M(-1)s(-1), 2.4 × 10(5) M(-1)s(-1), 1.7 × 10(5) M(-1)s(-1), and 1.7 × 10(5) M(-1)s(-1), respectively). However, the average electrostatic free energies (ΔG(e1)(∗)) were very different (-4.2 kcal/mol, -2.4 kcal/mol, -0.1 kcal/mol, and -0.5 kcal/mol, respectively, at ionic strength=160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 10(8) M(-1)s(-1), 1.3 × 10(7) M(-1)s(-1), 2.0 × 10(5) M(-1)s(-1), and 7.6 × 10(4) M(-1)s(-1), respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with ΔG(e1)(∗). Together these results suggest that protein charges can be manipulated to tune k(a) and control biological function.
四种细胞因子——促红细胞生成素(EPO)、白细胞介素-4(IL4)、人生长激素(hGH)和催乳素(PRL)——均形成四螺旋束并与 I 型细胞因子受体结合。然而,它们与受体的结合速率常数跨度达 5000 倍。在这里,我们通过我们的蛋白质-蛋白质偶联暂态复合物理论来定量地解释这些巨大的速率常数差异。在暂态复合物中,两种蛋白质具有近乎天然的分离和相对取向,但尚未形成天然复合物的短程特异性相互作用。该理论预测了偶联速率常数为 k(a)=k(a0)exp(-ΔG(el)(∗)/k(B)T),其中 k(a0)是通过随机扩散到达暂态复合物的基本速率常数,玻尔兹曼因子捕获了静电引力引起的速率增强。我们发现,四种细胞因子与受体结合的速率常数的巨大差异主要来自于四个细胞因子-受体复合物之间的电荷互补性差异。EPO、IL4、hGH 和 PRL 的基本速率常数(k(a0))相似(5.2×10(5)M(-1)s(-1)、2.4×10(5)M(-1)s(-1)、1.7×10(5)M(-1)s(-1)和 1.7×10(5)M(-1)s(-1))。然而,平均静电自由能(ΔG(e1)(∗))差异很大(分别为-4.2kcal/mol、-2.4kcal/mol、-0.1kcal/mol 和-0.5kcal/mol,在离子强度=160mM 时)。没有调整任何参数预测的受体结合速率常数分别为 6.2×10(8)M(-1)s(-1)、1.3×10(7)M(-1)s(-1)、2.0×10(5)M(-1)s(-1)和 7.6×10(4)M(-1)s(-1),分别用于 EPO、IL4、hGH 和 PRL,与实验结果吻合良好。我们揭示了这些不同的速率常数与细胞因子的循环浓度呈反相关,导致细胞因子-受体的结合速率非常接近受体半衰期所设定的极限,这表明这些结合速率具有功能相关性,并且可能经过了进化的调整。我们的计算还很好地再现了突变和离子强度对速率常数的影响,并对 hGH 与其受体的复合物产生了一系列突变,通过增加电荷互补性,可能将速率常数提高近 100 倍。为了量化电荷互补性,我们提出了一个基于结合界面内电荷分布的简单指标,该指标与 ΔG(e1)(∗)显示出良好的相关性。这些结果共同表明,可以操纵蛋白质电荷来调节 k(a)并控制生物学功能。