Suppr超能文献

磁共振成像上脑胶质瘤的数学建模。

Mathematical modeling of glioma on MRI.

机构信息

Service de neurochirurgie du Pr George, hôpital Lariboisière, 2 rue Ambroise-Paré, Paris, France.

出版信息

Rev Neurol (Paris). 2011 Oct;167(10):715-20. doi: 10.1016/j.neurol.2011.07.009. Epub 2011 Sep 3.

Abstract

The advent of Magnetic Resonance Imaging (MRI) has enabled quantification of glioma growth with millimetric accuracy. Thus, it is now possible to monitor the growth curve of tumor diameter for each patient. Mathematical modeling contributes to the analysis of these curves and to determining individual parameters characterizing tumor dynamics. We will focus on the most studied model, based on a proliferation-diffusion equation. We will review how this approach, when applied to low-grade gliomas, has enabled defining a new way to quantify their natural history, leading to the inclusion of tumor kinetics among prognostic factors. Finally, quantitative imaging coupled with mathematical modeling is opening new avenues in our understanding of treatment effects, allowing to optimize therapeutic strategies for gliomas in the near future.

摘要

磁共振成像(MRI)的出现使胶质瘤的生长能够以毫米级的精度进行定量。因此,现在可以监测每个患者的肿瘤直径生长曲线。数学建模有助于分析这些曲线,并确定描述肿瘤动力学的个体参数。我们将重点介绍研究最多的模型,该模型基于增殖-扩散方程。我们将回顾当应用于低级别胶质瘤时,这种方法如何能够定义一种量化其自然史的新方法,从而使肿瘤动力学成为预后因素之一。最后,定量成像与数学建模相结合,为我们理解治疗效果开辟了新的途径,使我们能够在不久的将来优化胶质瘤的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验