Zhijiang College, Zhejiang University of Technology, Hangzhou, 310024, PR China.
Neural Netw. 2012 Jan;25(1):114-21. doi: 10.1016/j.neunet.2011.08.003. Epub 2011 Aug 17.
Twin support vector machines (TWSVMs) obtain faster learning speed by solving a pair of smaller SVM-type problems. In order to increase its efficiency further, this paper presents a coordinate descent margin based twin vector machine (CDMTSVM) compared with the original TWSVM. The major advantages of CDMTSVM lie in two aspects: (1) The primal and dual problems are reformulated and improved by adding a regularization term in the primal problems which implies maximizing the "margin" between the proximal hyperplane and bounding hyperplane, yielding the dual problems to be stable positive definite quadratic programming problems. (2) A novel coordinate descent method is proposed for our dual problems which leads to very fast training. As our coordinate descent method handles one data point at a time, it can process very large datasets that need not reside in memory. Our experiments on publicly available datasets indicate that our CDMTSVM is not only fast, but also shows good generalization performance.
双子支持向量机(TWSVM)通过求解一对较小的 SVM 型问题来获得更快的学习速度。为了进一步提高其效率,本文提出了一种基于坐标下降边界的双子向量机(CDMTSVM),与原始的 TWSVM 相比。CDMTSVM 的主要优点在于两个方面:(1)通过在原问题中添加一个正则化项,对原问题和对偶问题进行了重新表述和改进,这意味着最大化近端超平面和边界超平面之间的“边界”,从而使对偶问题成为稳定的正定二次规划问题。(2)提出了一种新的坐标下降方法来解决我们的对偶问题,这使得训练速度非常快。由于我们的坐标下降方法一次处理一个数据点,因此它可以处理不需要驻留在内存中的非常大的数据集。我们在公开数据集上的实验表明,我们的 CDMTSVM 不仅速度快,而且表现出良好的泛化性能。