School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, People's Republic of China.
Neural Netw. 2012 Nov;35:31-9. doi: 10.1016/j.neunet.2012.06.010. Epub 2012 Jul 13.
A Twin Support Vector Machine (TWSVM), as a variant of a Multisurface Proximal Support Vector Machine via Generalized Eigenvalues (GEPSVM), attempts to improve the generalization of GEPSVM, whose solution follows from solving two quadratic programming problems (QPPs), each of which is smaller than in a standard SVM. Unfortunately, the two QPPs still lead to rather high computational costs. Moreover, although TWSVM has better classification performance than GEPSVM, a major disadvantage is it fails to exploit the underlying correlation or similarity information between any pair of data points with the same labels that may be important for classification performance as much as possible. To mitigate the above deficiencies, in this paper, we propose a novel nonparallel plane classifier, called Weighted Twin Support Vector Machines with Local Information (WLTSVM). WLTSVM mines as much underlying similarity information within samples as possible. This method not only retains the superior characteristics of TWSVM, but also has its additional advantages: (1) comparable or better classification accuracy compared to SVM, GEPSVM and TWSVM; (2) taking motivation from standard SVM, the concept of support vectors is retained; (3) more efficient than TWSVM in terms of computational costs; and (4) only one penalty parameter is considered as opposed to two in TWSVM. Finally, experiments on both simulated and real problems confirm the effectiveness of our method.
双子支持向量机(TWSVM)是广义特征值多曲面近支持向量机(GEPSVM)的一种变体,旨在提高 GEPSVM 的泛化能力,其解来自于求解两个二次规划问题(QPP),每个 QPP 都比标准 SVM 中的 QPP 小。不幸的是,这两个 QPP 仍然导致相当高的计算成本。此外,尽管 TWSVM 比 GEPSVM 具有更好的分类性能,但一个主要缺点是它无法利用具有相同标签的任意一对数据点之间的潜在相关性或相似性信息,这些信息对于分类性能可能非常重要。为了减轻上述缺陷,本文提出了一种新颖的非平行平面分类器,称为带局部信息的加权双子支持向量机(WLTSVM)。WLTSVM 在样本中挖掘尽可能多的潜在相似信息。该方法不仅保留了 TWSVM 的优越特性,而且具有其额外的优势:(1)与 SVM、GEPSVM 和 TWSVM 相比,具有可比或更好的分类精度;(2)从标准 SVM 中得到启发,保留了支持向量的概念;(3)在计算成本方面比 TWSVM 更高效;(4)与 TWSVM 相比,只需考虑一个惩罚参数。最后,对模拟和实际问题的实验证实了我们方法的有效性。