Department of Control Science and Engineering, Harbin Institute of Technology, Heilongjiang, China.
Comput Med Imaging Graph. 2012 Apr;36(3):171-82. doi: 10.1016/j.compmedimag.2011.08.002. Epub 2011 Sep 3.
Multi-photon fluorescence microscopy (MFM) captures high-resolution fluorescence image sequences and can be used for the intact brain imaging of small animals. Recently, it has been extended from anesthetized and head-stabilized mice to awake and head-restrained ones for in vivo neurological study. In these applications, motion correction is an important pre-processing step since brain pulsation and body movement can cause motion artifact and prevent stable serial image acquisition at such high spatial resolution. This paper proposes a speed embedded Hidden Markov model (SEHMM) for motion correction in MFM imaging of awake head-restrained mice. The algorithm extends the traditional Hidden Markov model (HMM) method by embedding a motion prediction model to better estimate the state transition probability. The novelty of the method lies in using adaptive probability to estimate the linear motion, while the state-of-the-art method assumes that the highest probability is assigned to the case with no motion. In experiments we demonstrated that SEHMM is more accurate than the traditional HMM using both simulated and real MFM image sequences.
多光子荧光显微镜(MFM)可捕获高分辨率荧光图像序列,可用于小动物的完整大脑成像。最近,它已从麻醉和头部固定的小鼠扩展到清醒和头部固定的小鼠,用于活体神经科学研究。在这些应用中,运动校正(motion correction)是一个重要的预处理步骤,因为大脑搏动和身体运动可能会导致运动伪影(motion artifact),并阻止在如此高的空间分辨率下进行稳定的连续图像采集。本文提出了一种用于清醒头部固定小鼠的 MFM 成像中运动校正的速度嵌入隐马尔可夫模型(speed embedded Hidden Markov model,SEHMM)。该算法通过嵌入运动预测模型来扩展传统的隐马尔可夫模型(HMM)方法,以更好地估计状态转移概率。该方法的新颖之处在于使用自适应概率来估计线性运动,而最先进的方法则假设将最高概率分配给没有运动的情况。在实验中,我们证明了 SEHMM 比传统的 HMM 在模拟和真实的 MFM 图像序列中都更准确。