Ying Lei, Liang Zhi-Pei, Munson David C, Koetter Ralf, Frey Brendan J
Department of Electrical Engineering and Computer Science, University of Wisconsin, Milwaukee, WI 53201, USA.
IEEE Trans Med Imaging. 2006 Jan;25(1):128-36. doi: 10.1109/TMI.2005.861021.
Phase unwrapping is an important problem in many magnetic resonance imaging applications, such as field mapping and flow imaging. The challenge in two-dimensional phase unwrapping lies in distinguishing jumps due to phase wrapping from those due to noise and/or abrupt variations in the actual function. This paper addresses this problem using a Markov random field to model the true phase function, whose parameters are determined by maximizing the a posteriori probability. To reduce the computational complexity of the optimization procedure, an efficient algorithm is also proposed for parameter estimation using a series of dynamic programming connected by the iterated conditional modes. The proposed method has been tested with both simulated and experimental data, yielding better results than some of the state-of-the-art method (e.g., the popular least-squares method) in handling noisy phase images with rapid phase variations.
相位展开是许多磁共振成像应用中的一个重要问题,例如场映射和流动成像。二维相位展开的挑战在于区分由于相位包裹引起的跳跃与由于噪声和/或实际函数中的突然变化引起的跳跃。本文使用马尔可夫随机场对真实相位函数进行建模来解决这个问题,其参数通过最大化后验概率来确定。为了降低优化过程的计算复杂度,还提出了一种有效的算法,用于使用一系列通过迭代条件模式连接的动态规划进行参数估计。所提出的方法已经在模拟数据和实验数据上进行了测试,在处理具有快速相位变化的噪声相位图像时,产生了比一些现有方法(例如流行的最小二乘法)更好的结果。