McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Genome Res. 2011 Oct;21(10):1720-7. doi: 10.1101/gr.122986.111. Epub 2011 Sep 2.
Translocations are a common class of chromosomal aberrations and can cause disease by physically disrupting genes or altering their regulatory environment. Some translocations, apparently balanced at the microscopic level, include deletions, duplications, insertions, or inversions at the molecular level. Traditionally, chromosomal rearrangements have been investigated with a conventional banded karyotype followed by arduous positional cloning projects. More recently, molecular cytogenetic approaches using fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH), or whole-genome SNP genotyping together with molecular methods such as inverse PCR and quantitative PCR have allowed more precise evaluation of the breakpoints. These methods suffer, however, from being experimentally intensive and time-consuming and of less than single base pair resolution. Here we describe targeted breakpoint capture followed by next-generation sequencing (TBCS) as a new approach to the general problem of determining the precise structural characterization of translocation breakpoints and related chromosomal aberrations. We tested this approach in three patients with complex chromosomal translocations: The first had craniofacial abnormalities and an apparently balanced t(2;3)(p15;q12) translocation; the second has cleidocranial dysplasia (OMIM 119600) associated with a t(2;6)(q22;p12.3) translocation and a breakpoint in RUNX2 on chromosome 6p; and the third has acampomelic campomelic dysplasia (OMIM 114290) associated with a t(5;17)(q23.2;q24) translocation, with a breakpoint upstream of SOX9 on chromosome 17q. Preliminary studies indicated complex rearrangements in patients 1 and 3 with a total of 10 predicted breakpoints in the three patients. By using TBCS, we quickly and precisely defined eight of the 10 breakpoints.
易位是常见的染色体畸变类型,可通过物理破坏基因或改变其调控环境而导致疾病。有些易位在显微镜下看似平衡,但在分子水平上却包括缺失、重复、插入或倒位。传统上,通过传统的带型核型分析,然后进行艰苦的定位克隆项目来研究染色体重排。最近,使用荧光原位杂交(FISH)、阵列比较基因组杂交(aCGH)或全基因组 SNP 基因分型的分子细胞遗传学方法,结合反转录 PCR 和定量 PCR 等分子方法,可更精确地评估断点。然而,这些方法存在实验强度大、耗时且分辨率低于单个碱基对的问题。在这里,我们描述了靶向断点捕获,然后进行下一代测序(TBCS),作为一种新方法来解决确定易位断点和相关染色体畸变的精确结构特征的一般问题。我们在 3 名患有复杂染色体易位的患者中测试了这种方法:第一个患者有颅面异常和一个看似平衡的 t(2;3)(p15;q12)易位;第二个患者患有 cleidocranial dysplasia(OMIM 119600),与 t(2;6)(q22;p12.3)易位和染色体 6p 上 RUNX2 的断点相关;第三个患者患有 acampomelic campomelic dysplasia(OMIM 114290),与 t(5;17)(q23.2;q24)易位相关,染色体 17q 上 SOX9 上游有一个断点。初步研究表明,1 号和 3 号患者的重排情况复杂,这 3 名患者共有 10 个预测断点。通过使用 TBCS,我们快速而精确地定义了 10 个断点中的 8 个。