Suppr超能文献

靶向捕获和新一代测序技术对复杂染色体重排的分析。

Characterization of complex chromosomal rearrangements by targeted capture and next-generation sequencing.

机构信息

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

出版信息

Genome Res. 2011 Oct;21(10):1720-7. doi: 10.1101/gr.122986.111. Epub 2011 Sep 2.

Abstract

Translocations are a common class of chromosomal aberrations and can cause disease by physically disrupting genes or altering their regulatory environment. Some translocations, apparently balanced at the microscopic level, include deletions, duplications, insertions, or inversions at the molecular level. Traditionally, chromosomal rearrangements have been investigated with a conventional banded karyotype followed by arduous positional cloning projects. More recently, molecular cytogenetic approaches using fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH), or whole-genome SNP genotyping together with molecular methods such as inverse PCR and quantitative PCR have allowed more precise evaluation of the breakpoints. These methods suffer, however, from being experimentally intensive and time-consuming and of less than single base pair resolution. Here we describe targeted breakpoint capture followed by next-generation sequencing (TBCS) as a new approach to the general problem of determining the precise structural characterization of translocation breakpoints and related chromosomal aberrations. We tested this approach in three patients with complex chromosomal translocations: The first had craniofacial abnormalities and an apparently balanced t(2;3)(p15;q12) translocation; the second has cleidocranial dysplasia (OMIM 119600) associated with a t(2;6)(q22;p12.3) translocation and a breakpoint in RUNX2 on chromosome 6p; and the third has acampomelic campomelic dysplasia (OMIM 114290) associated with a t(5;17)(q23.2;q24) translocation, with a breakpoint upstream of SOX9 on chromosome 17q. Preliminary studies indicated complex rearrangements in patients 1 and 3 with a total of 10 predicted breakpoints in the three patients. By using TBCS, we quickly and precisely defined eight of the 10 breakpoints.

摘要

易位是常见的染色体畸变类型,可通过物理破坏基因或改变其调控环境而导致疾病。有些易位在显微镜下看似平衡,但在分子水平上却包括缺失、重复、插入或倒位。传统上,通过传统的带型核型分析,然后进行艰苦的定位克隆项目来研究染色体重排。最近,使用荧光原位杂交(FISH)、阵列比较基因组杂交(aCGH)或全基因组 SNP 基因分型的分子细胞遗传学方法,结合反转录 PCR 和定量 PCR 等分子方法,可更精确地评估断点。然而,这些方法存在实验强度大、耗时且分辨率低于单个碱基对的问题。在这里,我们描述了靶向断点捕获,然后进行下一代测序(TBCS),作为一种新方法来解决确定易位断点和相关染色体畸变的精确结构特征的一般问题。我们在 3 名患有复杂染色体易位的患者中测试了这种方法:第一个患者有颅面异常和一个看似平衡的 t(2;3)(p15;q12)易位;第二个患者患有 cleidocranial dysplasia(OMIM 119600),与 t(2;6)(q22;p12.3)易位和染色体 6p 上 RUNX2 的断点相关;第三个患者患有 acampomelic campomelic dysplasia(OMIM 114290),与 t(5;17)(q23.2;q24)易位相关,染色体 17q 上 SOX9 上游有一个断点。初步研究表明,1 号和 3 号患者的重排情况复杂,这 3 名患者共有 10 个预测断点。通过使用 TBCS,我们快速而精确地定义了 10 个断点中的 8 个。

相似文献

1
Characterization of complex chromosomal rearrangements by targeted capture and next-generation sequencing.
Genome Res. 2011 Oct;21(10):1720-7. doi: 10.1101/gr.122986.111. Epub 2011 Sep 2.
7
Atypical breakpoint in a t(6;17) translocation case of acampomelic campomelic dysplasia.
Eur J Med Genet. 2014 Jul;57(7):315-8. doi: 10.1016/j.ejmg.2014.04.018. Epub 2014 May 10.
9
A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of .
Cold Spring Harb Mol Case Stud. 2018 Jun 1;4(3). doi: 10.1101/mcs.a002766. Print 2018 Jun.

引用本文的文献

1
Cytogenomic characterization of karyotypes with additional autosomal material.
Sci Rep. 2025 Apr 9;15(1):12191. doi: 10.1038/s41598-025-97077-1.
2
Functional categorization of gene regulatory variants that cause Mendelian conditions.
Hum Genet. 2024 Apr;143(4):559-605. doi: 10.1007/s00439-023-02639-w. Epub 2024 Mar 4.
3
Chromosomal Aberrations in 224 Couples with Recurrent Pregnancy Loss.
J Hum Reprod Sci. 2020 Oct-Dec;13(4):340-348. doi: 10.4103/jhrs.JHRS_11_20. Epub 2020 Dec 28.
5
Partial trisomy 4q and monosomy 5p inherited from a maternal translocationt(4;5)(q33; p15) in three adverse pregnancies.
Mol Cytogenet. 2020 Jun 30;13:26. doi: 10.1186/s13039-020-00492-4. eCollection 2020.
6
The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach.
Front Microbiol. 2020 Jan 28;10:3084. doi: 10.3389/fmicb.2019.03084. eCollection 2019.
7
Long-read sequencing and haplotype linkage analysis enabled preimplantation genetic testing for patients carrying pathogenic inversions.
J Med Genet. 2019 Nov;56(11):741-749. doi: 10.1136/jmedgenet-2018-105976. Epub 2019 Aug 22.
8
Genomic Investigation of Balanced Chromosomal Rearrangements in Patients with Abnormal Phenotypes.
Mol Syndromol. 2017 Jun;8(4):187-194. doi: 10.1159/000477084. Epub 2017 Jun 1.

本文引用的文献

1
Mapping copy number variation by population-scale genome sequencing.
Nature. 2011 Feb 3;470(7332):59-65. doi: 10.1038/nature09708.
2
Integrative genomics viewer.
Nat Biotechnol. 2011 Jan;29(1):24-6. doi: 10.1038/nbt.1754.
4
Cytogenetics and genetics of human cancer: methods and accomplishments.
Cancer Genet Cytogenet. 2010 Dec;203(2):102-26. doi: 10.1016/j.cancergencyto.2010.10.004.
5
Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans.
Genome Res. 2011 Jun;21(6):985-90. doi: 10.1101/gr.114777.110. Epub 2010 Oct 27.
7
SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data.
Bioinformatics. 2010 Aug 1;26(15):1895-6. doi: 10.1093/bioinformatics/btq293.
8
Natural mutagenesis of human genomes by endogenous retrotransposons.
Cell. 2010 Jun 25;141(7):1253-61. doi: 10.1016/j.cell.2010.05.020.
9
Mobile interspersed repeats are major structural variants in the human genome.
Cell. 2010 Jun 25;141(7):1171-82. doi: 10.1016/j.cell.2010.05.026.
10
LINE-1 retrotransposition activity in human genomes.
Cell. 2010 Jun 25;141(7):1159-70. doi: 10.1016/j.cell.2010.05.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验