Suppr超能文献

噬菌体携带的因子和宿主 LexA 调节噬菌体 GIL01 的裂解开关。

Phage-borne factors and host LexA regulate the lytic switch in phage GIL01.

机构信息

Laboratory of Food and Environmental Microbiology, Universite´ Catholique de Louvain, Croix du Sud, 2, Box L7.05.12,B-1348 Louvain-la-Neuve, Belgium.

出版信息

J Bacteriol. 2011 Nov;193(21):6008-19. doi: 10.1128/JB.05618-11. Epub 2011 Sep 2.

Abstract

The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque (cp) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of cp mutants also identified a 14-bp palindromic dinBox1 sequence within the P1-P2 promoter region that resembles the known LexA-binding site of Gram-positive bacteria. Mutations at conserved positions in dinBox1 result in a cp phenotype. Genomic analysis identified a total of three dinBox sites within GIL01 promoter regions. To investigate the possibility that the host LexA regulates GIL01, phage induction was measured in a host carrying a noncleavable lexA (Ind(-)) mutation. GIL01 formed stable lysogens in this host, but lytic growth could not be induced by treatment with mitomycin C. Also, mitomycin C induced β-galactosidase expression from GIL01-lacZ promoter fusions, and induction was similarly blocked in the lexA (Ind(-)) mutant host. These data support a model in which host LexA binds to dinBox sequences in GIL01, repressing phage gene expression during lysogeny and providing the switch necessary to enter lytic development.

摘要

苏云金芽孢杆菌温和噬菌体 GIL01 不会整合到宿主染色体中,而是作为细胞内的独立线性复制子稳定存在。与 lambdoid 噬菌体一样,GIL01 的裂解周期是作为细胞 SOS 反应的一部分诱导的,以应对 DNA 损伤。然而,在噬菌体基因组中没有检测到类似 CI 的维持抑制剂,这表明 GIL01 使用一种新的机制来维持溶原性。为了深入了解 GIL01 的调控回路,我们分离并鉴定了一组 17 个不能溶源化的清晰噬菌斑 (cp) 突变体。gp1 和 gp7 两种噬菌体编码的蛋白是稳定溶源形成所必需的。对 cp 突变体的分析还确定了 P1-P2 启动子区域内一个 14 碱基对的回文 dinBox1 序列,类似于革兰氏阳性菌已知的 LexA 结合位点。在 dinBox1 的保守位置发生突变会导致 cp 表型。基因组分析确定了 GIL01 启动子区域内共有三个 dinBox 位点。为了研究宿主 LexA 是否调控 GIL01,在携带非切割型 lexA (Ind(-)) 突变的宿主中测量了噬菌体的诱导。在这种宿主中,GIL01 形成了稳定的溶源,但用丝裂霉素 C 处理不能诱导裂解生长。此外,丝裂霉素 C 诱导了 GIL01-lacZ 启动子融合物的β-半乳糖苷酶表达,并且在 lexA (Ind(-)) 突变体宿主中同样被阻断。这些数据支持这样一种模型,即宿主 LexA 结合到 GIL01 中的 dinBox 序列,在溶原性期间抑制噬菌体基因表达,并提供进入裂解发育所需的开关。

相似文献

1
Phage-borne factors and host LexA regulate the lytic switch in phage GIL01.
J Bacteriol. 2011 Nov;193(21):6008-19. doi: 10.1128/JB.05618-11. Epub 2011 Sep 2.
2
Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor.
Structure. 2019 Jul 2;27(7):1094-1102.e4. doi: 10.1016/j.str.2019.03.019. Epub 2019 May 2.
3
Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue.
Nucleic Acids Res. 2018 Oct 12;46(18):9432-9443. doi: 10.1093/nar/gky646.
4
Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage.
Nucleic Acids Res. 2015 Sep 3;43(15):7315-29. doi: 10.1093/nar/gkv634. Epub 2015 Jul 2.
6
Elements in the λ immunity region regulate phage development: beyond the 'Genetic Switch'.
Mol Microbiol. 2019 Dec;112(6):1798-1813. doi: 10.1111/mmi.14394. Epub 2019 Oct 8.
7
Antirepression system associated with the life cycle switch in the temperate podoviridae phage SPC32H.
J Virol. 2013 Nov;87(21):11775-86. doi: 10.1128/JVI.02173-13. Epub 2013 Aug 28.
8
Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria.
Cell Host Microbe. 2019 May 8;25(5):746-755.e5. doi: 10.1016/j.chom.2019.03.017.
9
The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon.
J Bacteriol. 2007 Sep;189(17):6333-8. doi: 10.1128/JB.00599-07. Epub 2007 Jun 22.

引用本文的文献

1
Characteristics of phage-plasmids and their impact on microbial communities.
Essays Biochem. 2024 Dec 17;68(5):583-592. doi: 10.1042/EBC20240014.
2
Autoregulation ensures vertical transmission of the linear prophage GIL01.
Commun Biol. 2024 Oct 25;7(1):1388. doi: 10.1038/s42003-024-07082-9.
4
Engineered bacterial orthogonal DNA replication system for continuous evolution.
Nat Chem Biol. 2023 Dec;19(12):1504-1512. doi: 10.1038/s41589-023-01387-2. Epub 2023 Jul 13.
7
Locking down SOS Mutagenesis Repression in a Dynamic Pathogen.
J Bacteriol. 2022 Nov 15;204(11):e0022022. doi: 10.1128/jb.00220-22. Epub 2022 Oct 4.
8
The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway.
Front Microbiol. 2022 Aug 19;13:918015. doi: 10.3389/fmicb.2022.918015. eCollection 2022.
9
Genomic analysis of a novel active prophage of Hafnia paralvei.
Arch Virol. 2022 Oct;167(10):2027-2034. doi: 10.1007/s00705-022-05498-4. Epub 2022 Jun 25.

本文引用的文献

1
Vibrio cholerae LexA coordinates CTX prophage gene expression.
J Bacteriol. 2009 Nov;191(22):6788-95. doi: 10.1128/JB.00682-09. Epub 2009 Aug 7.
2
ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W396-401. doi: 10.1093/nar/gkp449. Epub 2009 May 29.
3
Protein structure prediction on the Web: a case study using the Phyre server.
Nat Protoc. 2009;4(3):363-71. doi: 10.1038/nprot.2009.2.
5
Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity.
Appl Environ Microbiol. 2008 Nov;74(21):6792-6. doi: 10.1128/AEM.01124-08. Epub 2008 Sep 12.
6
The bacterial LexA transcriptional repressor.
Cell Mol Life Sci. 2009 Jan;66(1):82-93. doi: 10.1007/s00018-008-8378-6.
7
RSAT: regulatory sequence analysis tools.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W119-27. doi: 10.1093/nar/gkn304. Epub 2008 May 21.
10
Aeons of distress: an evolutionary perspective on the bacterial SOS response.
FEMS Microbiol Rev. 2007 Nov;31(6):637-56. doi: 10.1111/j.1574-6976.2007.00082.x. Epub 2007 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验