Wallace Bailey A, Varona Natascha S, Hesketh-Best Poppy J, Stiffler Alexandra K, Silveira Cynthia B
Department of Biology, University of Miami, Coral Gables, FL 33146, United States.
Department Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae132.
Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-associated bacteria by bacteriophages can modify bacterial ecological interactions, yet very little is known about phage functions in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20,000 viral genomic sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host-phage-gene network identified keystone viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic algae.
造礁珊瑚的正常功能和恢复能力依赖于一个复杂的微生物群落。噬菌体对与珊瑚相关细菌的感染能够改变细菌间的生态相互作用,但对于噬菌体在珊瑚共生体中的功能却知之甚少。这一知识缺口源于方法上的限制,这些限制使得从珊瑚样本中难以获得高质量的病毒基因组以及确定细菌宿主。在此,我们引入了一种大小分级分离方法,该方法分别将珊瑚宏基因组中的细菌和病毒回收率提高了9倍和2倍,并能够在相对较低的测序覆盖度下对细菌和病毒基因组进行组装和分箱。我们将这些病毒基因组与来自677个公开可用的石珊瑚宏基因组、病毒组以及细菌分离株的基因组相结合,构建了一个包含超过20,000个病毒基因组序列的全球珊瑚病毒数据库,这些序列跨越四个病毒界。有尾噬菌体科的蓝病毒科和自书写病毒科最为丰富,分别取代了之前被称为肌尾噬菌体科和短尾噬菌体科的类群。这些病毒与626个细菌宏基因组组装基因组及细菌分离株之间的原噬菌体和CRISPR间隔序列联系表明,大多数病毒感染了最丰富的α-变形菌纲,以及像嗜盐厌氧菌纲和拟杆菌纲这样丰度较低的分类群。一个宿主-噬菌体-基因网络确定了关键病毒,这些病毒具有调节细菌代谢途径以及与真核细胞直接进行分子相互作用的基因组能力。这项研究揭示了噬菌体、细菌以及珊瑚宿主及其内共生藻类之间嵌套共生关系的基因组基础。