Suppr超能文献

适应景观:一种解释突变优势的替代理论。

Fitness landscapes: an alternative theory for the dominance of mutation.

机构信息

Centre d'Ecologie Fonctionnelle et Evolutive, 34293 Montpellier, France.

出版信息

Genetics. 2011 Nov;189(3):923-37. doi: 10.1534/genetics.111.132944. Epub 2011 Sep 2.

Abstract

Deleterious mutations tend to be recessive. Several theories, notably those of Fisher (based on selection) and Wright (based on metabolism), have been put forward to explain this pattern. Despite a long-lasting debate, the matter remains unresolved. This debate has focused on the average dominance of mutations. However, we also know very little about the distribution of dominance coefficients among mutations, and about its variation across environments. In this article we present a new approach to predicting this distribution. Our approach is based on a phenotypic fitness landscape model. First, we show that under a very broad range of conditions (and environments), the average dominance of mutation of small effects should be approximately one-quarter as long as adaptation of organisms to their environment can be well described by stabilizing selection on an arbitrary set of phenotypic traits. Second, the theory allows predicting the whole distribution of dominance coefficients among mutants. Because it provides quantitative rather than qualitative predictions, this theory can be directly compared to data. We found that its prediction on mean dominance (average dominance close to 0.25) agreed well with the data, based on a meta-analysis of dominance data for mildly deleterious mutations. However, a simple landscape model does not account for the dominance of mutations of large effects and we provide possible extension of the theory for this class of mutations. Because dominance is a central parameter for evolutionary theory, and because these predictions are quantitative, they set the stage for a wide range of applications and further empirical tests.

摘要

有害突变往往是隐性的。Fisher(基于选择)和 Wright(基于代谢)等理论都提出了解释这种模式的理论。尽管存在长期的争论,但这个问题仍然没有解决。这场争论主要集中在突变的平均显性上。然而,我们对突变的显性系数分布及其在不同环境中的变化也知之甚少。在本文中,我们提出了一种预测这种分布的新方法。我们的方法基于表型适应度景观模型。首先,我们表明,在非常广泛的条件(和环境)下,小效应突变的平均显性应该大约是生物体适应环境的稳定性选择对任意一组表型性状的四分之一。其次,该理论可以预测突变体之间显性系数的整个分布。因为它提供了定量而不是定性的预测,所以这个理论可以直接与数据进行比较。我们发现,根据对轻度有害突变的显性数据的荟萃分析,其对平均显性的预测(接近 0.25 的平均显性)与数据吻合得很好。然而,简单的景观模型并不能解释大效应突变的显性,我们为这一类突变提供了理论的可能扩展。因为显性是进化理论的一个核心参数,而且这些预测是定量的,所以它们为广泛的应用和进一步的经验测试奠定了基础。

相似文献

1
Fitness landscapes: an alternative theory for the dominance of mutation.
Genetics. 2011 Nov;189(3):923-37. doi: 10.1534/genetics.111.132944. Epub 2011 Sep 2.
2
Gene expression drives the evolution of dominance.
Nat Commun. 2018 Jul 16;9(1):2750. doi: 10.1038/s41467-018-05281-7.
3
Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.
Genetics. 2014 May;197(1):237-55. doi: 10.1534/genetics.113.160325. Epub 2014 Feb 28.
4
Inferring fitness landscapes by regression produces biased estimates of epistasis.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2301-9. doi: 10.1073/pnas.1400849111. Epub 2014 May 19.
5
On the incongruence of genotype-phenotype and fitness landscapes.
PLoS Comput Biol. 2022 Sep 19;18(9):e1010524. doi: 10.1371/journal.pcbi.1010524. eCollection 2022 Sep.
6
The distribution of epistasis on simple fitness landscapes.
Biol Lett. 2019 Apr 26;15(4):20180881. doi: 10.1098/rsbl.2018.0881.
7
Effects of new mutations on fitness: insights from models and data.
Ann N Y Acad Sci. 2014 Jul;1320(1):76-92. doi: 10.1111/nyas.12460. Epub 2014 May 30.
8
Revisiting Dominance in Population Genetics.
Genome Biol Evol. 2024 Aug 5;16(8). doi: 10.1093/gbe/evae147.
9
A test of Fisher's theory of dominance.
Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11413-5. doi: 10.1073/pnas.88.24.11413.
10
Widespread correlations between dominance and homozygous effects of mutations: implications for theories of dominance.
Genetics. 2005 Sep;171(1):385-92. doi: 10.1534/genetics.104.039016. Epub 2005 Jun 21.

引用本文的文献

2
A gene-based model of fitness and its implications for genetic variation: Genetic and inbreeding loads.
bioRxiv. 2025 Jul 9:2025.02.19.639162. doi: 10.1101/2025.02.19.639162.
3
Effects of inbreeding on balancing selection: insights from Fisher's geometric model.
Genetics. 2025 Sep 3;231(1). doi: 10.1093/genetics/iyaf128.
6
Estimation of Inbreeding Depression From Overdominant Loci Using Molecular Markers.
Evol Appl. 2025 Mar 13;18(3):e70085. doi: 10.1111/eva.70085. eCollection 2025 Mar.
8
Reconciling theories of dominance with the relative rates of adaptive substitution on sex chromosomes and autosomes.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2406335121. doi: 10.1073/pnas.2406335121. Epub 2024 Oct 22.
10
Revisiting Dominance in Population Genetics.
Genome Biol Evol. 2024 Aug 5;16(8). doi: 10.1093/gbe/evae147.

本文引用的文献

1
Balanced Polymorphisms and the Evolution of Dominance.
Am Nat. 1999 Jun;153(6):561-574. doi: 10.1086/303204.
2
PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION.
Evolution. 1999 Jun;53(3):645-663. doi: 10.1111/j.1558-5646.1999.tb05361.x.
3
NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION.
Evolution. 1976 Jun;30(2):314-334. doi: 10.1111/j.1558-5646.1976.tb00911.x.
4
Evolution and speciation on holey adaptive landscapes.
Trends Ecol Evol. 1997 Aug;12(8):307-12. doi: 10.1016/S0169-5347(97)01098-7.
5
Inferences about the distribution of dominance drawn from yeast gene knockout data.
Genetics. 2011 Feb;187(2):553-66. doi: 10.1534/genetics.110.124560. Epub 2010 Nov 23.
7
Ploidy and the evolution of endosperm of flowering plants.
Genetics. 2010 Feb;184(2):439-53. doi: 10.1534/genetics.109.110833. Epub 2009 Nov 23.
8
The genetics of inbreeding depression.
Nat Rev Genet. 2009 Nov;10(11):783-96. doi: 10.1038/nrg2664.
9
Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group.
Evolution. 2010 Jan;64(1):253-60. doi: 10.1111/j.1558-5646.2009.00823.x. Epub 2009 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验