Suppr超能文献

蛋白磷酸酶Pph3及其调节亚基Psy2在白色念珠菌DNA损伤恢复过程中调节Rad53去磷酸化和细胞形态发生。

Protein phosphatase Pph3 and its regulatory subunit Psy2 regulate Rad53 dephosphorylation and cell morphogenesis during recovery from DNA damage in Candida albicans.

作者信息

Sun Ling Ling, Li Wan Jie, Wang Hai Tao, Chen Jie, Deng Ping, Wang Yue, Sang Jian Li

机构信息

Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China.

出版信息

Eukaryot Cell. 2011 Nov;10(11):1565-73. doi: 10.1128/EC.05042-11. Epub 2011 Sep 2.

Abstract

The ability of the pathogenic fungus Candida albicans to switch cellular morphologies is important for infection and virulence. Recent studies have revealed that C. albicans yeast cells can switch to filamentous growth under genotoxic stress in a manner dependent on the DNA replication/damage checkpoint. Here, we have investigated the functions of Pph3 (orf19.4378) and Psy2 (orf19.3685), whose orthologues in Saccharomyces cerevisiae mediate the dephosphorylation of the DNA damage checkpoint kinase Rad53 and the histone variant H2AX during recovery from DNA damage. Deleting PPH3 or PSY2 causes hypersensitivity to DNA-damaging agents, including cisplatin, methylmethane sulfonate (MMS), and UV light. In addition, pph3Δ and psy2Δ cells exhibit strong filamentous growth under genotoxic stress. Flow cytometry analysis shows that the mutant cells have lost the ability to adapt to genotoxic stress and remain arrested even after the stress is withdrawn. Furthermore, we show that Pph3 and Psy2 are required for the dephosphorylation of Rad53, but not H2AX, during DNA damage recovery. Taken together, these results show that C. albicans Pph3 and Psy2 have important roles in mediating genotoxin-induced filamentous growth and regulating Rad53 dephosphorylation.

摘要

致病性真菌白色念珠菌转换细胞形态的能力对于感染和毒力至关重要。最近的研究表明,白色念珠菌酵母细胞在遗传毒性应激下能够以依赖于DNA复制/损伤检查点的方式转换为丝状生长。在此,我们研究了Pph3(orf19.4378)和Psy2(orf19.3685)的功能,它们在酿酒酵母中的同源物在从DNA损伤中恢复过程中介导DNA损伤检查点激酶Rad53和组蛋白变体H2AX的去磷酸化。删除PPH3或PSY2会导致对DNA损伤剂(包括顺铂、甲基磺酸甲酯(MMS)和紫外线)敏感。此外,pph3Δ和psy2Δ细胞在遗传毒性应激下表现出强烈的丝状生长。流式细胞术分析表明,突变细胞失去了适应遗传毒性应激的能力,即使在应激消除后仍处于停滞状态。此外,我们表明,在DNA损伤恢复过程中,Pph3和Psy2是Rad53去磷酸化所必需的,但不是H2AX去磷酸化所必需的。综上所述,这些结果表明白色念珠菌Pph3和Psy2在介导基因毒素诱导的丝状生长和调节Rad53去磷酸化方面具有重要作用。

相似文献

2
Pph3 dephosphorylation of Rad53 is required for cell recovery from MMS-induced DNA damage in Candida albicans.
PLoS One. 2012;7(5):e37246. doi: 10.1371/journal.pone.0037246. Epub 2012 May 14.
4
Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9290-5. doi: 10.1073/pnas.0703252104. Epub 2007 May 21.
6
Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans.
Mol Biol Cell. 2007 Mar;18(3):815-26. doi: 10.1091/mbc.e06-05-0442. Epub 2006 Dec 20.
7
Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
Genes Dev. 2008 Jul 15;22(14):1906-20. doi: 10.1101/gad.1660408.
8
Rfa2 is specifically dephosphorylated by Pph3 in Candida albicans.
Biochem J. 2013 Feb 1;449(3):673-81. doi: 10.1042/BJ20120952.
9
Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
J Biol Chem. 2008 Jun 20;283(25):17123-30. doi: 10.1074/jbc.M801402200. Epub 2008 Apr 25.
10

引用本文的文献

2
DNA damage checkpoint execution and the rules of its disengagement.
Front Cell Dev Biol. 2022 Oct 6;10:1020643. doi: 10.3389/fcell.2022.1020643. eCollection 2022.
3
DNA damage checkpoint and repair: From the budding yeast to the pathogenic fungus .
Comput Struct Biotechnol J. 2021 Nov 25;19:6343-6354. doi: 10.1016/j.csbj.2021.11.033. eCollection 2021.
5
DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity.
Curr Genet. 2021 Jun;67(3):439-445. doi: 10.1007/s00294-021-01162-7. Epub 2021 Feb 23.
6
Loss of Arp1, a putative actin-related protein, triggers filamentous and invasive growth and impairs pathogenicity in .
Comput Struct Biotechnol J. 2020 Dec 1;18:4002-4015. doi: 10.1016/j.csbj.2020.11.034. eCollection 2020.
8
Hof1 plays a checkpoint-related role in MMS-induced DNA damage response in .
Mol Biol Cell. 2020 Mar 1;31(5):348-359. doi: 10.1091/mbc.E19-06-0316. Epub 2020 Jan 15.
9
Ser/Thr protein phosphatases in fungi: structure, regulation and function.
Microb Cell. 2019 Apr 24;6(5):217-256. doi: 10.15698/mic2019.05.677.
10
PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1613-1620. doi: 10.1073/pnas.1817078116. Epub 2019 Jan 17.

本文引用的文献

2
Protein phosphatase PP4 is overexpressed in human breast and lung tumors.
Cell Res. 2008 Sep;18(9):974-7. doi: 10.1038/cr.2008.274.
3
PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint.
EMBO Rep. 2008 Oct;9(10):1019-26. doi: 10.1038/embor.2008.162. Epub 2008 Aug 29.
5
Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
Genes Dev. 2008 Jul 15;22(14):1906-20. doi: 10.1101/gad.1660408.
6
A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication.
Mol Cell. 2008 Jul 11;31(1):33-46. doi: 10.1016/j.molcel.2008.05.016.
7
Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
J Biol Chem. 2008 Jun 20;283(25):17123-30. doi: 10.1074/jbc.M801402200. Epub 2008 Apr 25.
8
Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9290-5. doi: 10.1073/pnas.0703252104. Epub 2007 May 21.
9
Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans.
Mol Biol Cell. 2007 Mar;18(3):815-26. doi: 10.1091/mbc.e06-05-0442. Epub 2006 Dec 20.
10
An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth.
J Cell Biol. 2006 Dec 4;175(5):743-53. doi: 10.1083/jcb.200605081. Epub 2006 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验