Fu Hailuo, Rahaman Mohamed N, Day Delbert E
Department of Materials Science and Engineering, Center for Bone and Tissue Repair and Regeneration, Missouri University of Science and Technology, Rolla, Missouri 65409.
J Am Ceram Soc. 2010 Oct 1;93(10):3116-3123. doi: 10.1111/j.1551-2916.2010.03833.x.
Solid microspheres (diameter = 106-150 μm) of a Li(2)O-CaO-B(2)O(3) glass were reacted in a K(2)HPO(4) solution to form hollow hydroxyapatite (HA) microspheres. The effect of the temperature (25°-60°C), K(2)HPO(4) concentration (0.01-0.25M), and pH (9-12) of the solution on the diameter (d) of the hollow core normalized to the diameter (D) of the HA microspheres, the surface area, and the pore size of the microsphere wall was studied. The statistically significant process variables that influenced these microstructural characteristics were evaluated using a factorial design approach. While the pH had little effect, the concentration of the solution had a marked effect on d/D, surface area, and pore size, whereas temperature markedly influenced d/D and pore size, but not the surface area. The largest hollow core size (d/D value ≈ 0.6) was obtained at the lowest temperature (25°C) or the lowest K(2)HPO(4) concentration (0.02M), while microspheres with the highest surface area (140 m(2)/g), with pores of size 10-12 nm were obtained at the highest concentration (0.25M). The consequences of these results for potential application of these hollow HA microspheres as devices for local delivery of proteins, such as drugs or growth factors, are discussed.
将直径为106 - 150μm的Li₂O - CaO - B₂O₃玻璃实心微球在K₂HPO₄溶液中反应,以形成中空羟基磷灰石(HA)微球。研究了溶液温度(25° - 60°C)、K₂HPO₄浓度(0.01 - 0.25M)和pH值(9 - 12)对中空核直径(d)与HA微球直径(D)的归一化值、表面积以及微球壁孔径的影响。使用析因设计方法评估了影响这些微观结构特征的具有统计学意义的工艺变量。虽然pH值影响较小,但溶液浓度对d/D、表面积和孔径有显著影响,而温度显著影响d/D和孔径,但不影响表面积。在最低温度(25°C)或最低K₂HPO₄浓度(0.02M)下可获得最大的中空核尺寸(d/D值≈0.6),而在最高浓度(0.25M)下可获得表面积最高(140 m²/g)、孔径为10 - 12 nm的微球。讨论了这些结果对于这些中空HA微球作为蛋白质(如药物或生长因子)局部递送装置潜在应用的影响。