Suppr超能文献

有色芽孢杆菌中的碳水化合物活性酶:评估碳水化合物利用和降解的基因组方法。

Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation.

机构信息

Department of Structural and Functional Biology, Federico II University of Naples, MSA, via Cinthia 4, 80126 Napoli, Italy.

出版信息

BMC Microbiol. 2011 Sep 5;11:198. doi: 10.1186/1471-2180-11-198.

Abstract

BACKGROUND

Spore-forming Bacilli are gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms.

RESULTS

We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans.

CONCLUSIONS

CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

摘要

背景

芽孢杆菌是革兰氏阳性细菌,广泛存在于各种自然栖息地,包括土壤、水和动物的胃肠道(GI)中。各种芽孢杆菌的分离株产生色素,主要是类胡萝卜素,具有防止紫外线辐射和氧反应形式的潜在保护作用。

结果

我们报告了从人类胃肠道中分离出的两种有色芽孢杆菌(属于芽孢杆菌属和芽孢杆菌属)的碳水化合物活性酶(CAZymes)的注释。在这两种分离株中发现了大量的糖苷水解酶(GHs)和碳水化合物结合模块(CBMs)。对 CAZyme 家族进行了详细的分析,并通过生长数据得到了支持。能够支持生长作为唯一碳源的碳水化合物在丰富培养基中对类胡萝卜素的形成产生负面影响,这表明两种芽孢杆菌中的类胡萝卜素生物合成受到类似分解代谢物阻遏的机制的控制。生物膜形成的实验结果证实了芽孢杆菌 HU36 产生基于纤维二糖的生物膜的基因组数据,而粘蛋白结合和降解实验支持了基因组数据,表明两种芽孢杆菌都能够降解哺乳动物聚糖。

结论

对两种有色芽孢杆菌的基因组进行 CAZy 分析,与其他芽孢杆菌属物种进行比较,并通过碳水化合物利用、生物膜形成和粘蛋白降解的实验数据进行验证,表明这两种有色芽孢杆菌适应了肠道环境,适合在人类肠道中生长和定植。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/3178493/d9cabbb1aeab/1471-2180-11-198-1.jpg

相似文献

2
Comparative Genomics of Rumen spp. Uncovers a Continuum of Polysaccharide-Degrading Capabilities.
Appl Environ Microbiol. 2019 Dec 13;86(1). doi: 10.1128/AEM.01993-19.
3
Carotenoids found in Bacillus.
J Appl Microbiol. 2010 Jun;108(6):1889-902. doi: 10.1111/j.1365-2672.2009.04590.x. Epub 2009 Oct 15.
4
A CAZyme-Rich Genome of a Taxonomically Novel Rhodophyte-Associated Carrageenolytic Marine Bacterium.
Mar Biotechnol (NY). 2018 Dec;20(6):685-705. doi: 10.1007/s10126-018-9840-6. Epub 2018 Jun 23.
6
Comparative genomics of Clostridium species associated with vacuum-packed meat spoilage.
Food Microbiol. 2021 May;95:103687. doi: 10.1016/j.fm.2020.103687. Epub 2020 Nov 21.
8
Comparative genomics of the gut commensal Bifidobacterium bifidum reveals adaptation to carbohydrate utilization.
Biochem Biophys Res Commun. 2021 Apr 2;547:155-161. doi: 10.1016/j.bbrc.2021.02.046. Epub 2021 Feb 19.
9
Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria.
Res Microbiol. 1994 Sep;145(7):503-18. doi: 10.1016/0923-2508(94)90028-0.

引用本文的文献

1
Identification of widely conserved biosynthetic gene cluster involved in pigment production of .
mSystems. 2025 Jul 22;10(7):e0075925. doi: 10.1128/msystems.00759-25. Epub 2025 Jul 3.
3
Exploring the effects of dietary inulin in rainbow trout fed a high-starch, 100% plant-based diet.
J Anim Sci Biotechnol. 2024 Jan 22;15(1):6. doi: 10.1186/s40104-023-00951-z.
5
Integrative functional analysis uncovers metabolic differences between Candida species.
Commun Biol. 2022 Sep 26;5(1):1013. doi: 10.1038/s42003-022-03955-z.

本文引用的文献

2
An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.
Mol Microbiol. 2011 Jun;80(5):1155-68. doi: 10.1111/j.1365-2958.2011.07653.x. Epub 2011 May 5.
3
Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis.
FEMS Microbiol Lett. 2010 Dec;313(1):1-9. doi: 10.1111/j.1574-6968.2010.02085.x.
5
Oral vaccine delivery by recombinant spore probiotics.
Int Rev Immunol. 2009;28(6):487-505. doi: 10.3109/08830180903215605.
6
Carotenoids found in Bacillus.
J Appl Microbiol. 2010 Jun;108(6):1889-902. doi: 10.1111/j.1365-2672.2009.04590.x. Epub 2009 Oct 15.
7
Characterization of intestinal bacteria tightly bound to the human ileal epithelium.
Res Microbiol. 2009 Dec;160(10):817-23. doi: 10.1016/j.resmic.2009.09.009. Epub 2009 Sep 24.
8
Defining the natural habitat of Bacillus spore-formers.
Res Microbiol. 2009 Jul-Aug;160(6):375-9. doi: 10.1016/j.resmic.2009.06.006. Epub 2009 Jul 7.
9
Characterization of spore forming Bacilli isolated from the human gastrointestinal tract.
J Appl Microbiol. 2008 Dec;105(6):2178-86. doi: 10.1111/j.1365-2672.2008.03934.x.
10
Bacillus subtilis isolated from the human gastrointestinal tract.
Res Microbiol. 2009 Mar;160(2):134-43. doi: 10.1016/j.resmic.2008.11.002. Epub 2008 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验