Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
Biochemistry. 2011 Oct 18;50(41):8937-49. doi: 10.1021/bi201181q. Epub 2011 Sep 21.
The explosion of protein sequence information requires that current strategies for function assignment evolve to complement experimental approaches with computationally based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown haloalkanoate dehalogenase superfamily member BT2127 (Uniprot accession code Q8A5 V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics-structure-mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with a k(cat)/K(m) value for pyrophosphate of ~1 × 10(5) M(-1) s(-1)), together with the gene context, support the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure-guided site-directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. On the basis of this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172, and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue, β-phosphoglucomutase, control the leaving group size (phosphate vs glucose phosphate) and the position of the Asp acid/base in the open versus closed conformations. HADSF pyrophosphatases represent a third mechanistic and fold type for bacterial pyrophosphatases.
蛋白质序列信息的爆炸式增长要求当前的功能分配策略不断发展,以补充基于实验的功能预测方法。这需要基于特异性决定因素的序列标记的识别和更明智的直系同源物定义来制定策略。在此,我们采用综合生物信息学-结构-机制方法,对拟杆菌属(Bacteroides thetaiotaomicron)来源的未知卤代烷酸脱卤酶超家族成员 BT2127(Uniprot 登录号 Q8A5 V9)进行功能分配。BT2127 的底物特异性谱和稳态速率常数(焦磷酸的 kcat/Km 值约为 1×10(5) M(-1) s(-1)),以及基因背景,支持其在体内的功能为无机焦磷酸酶。野生型 BT2127 和通过定点突变产生的几种变体的 X 射线结构分析表明,底物的选择性部分基于由帽结构域(特别是 Tyr76 和 Glu47 残基)施加的活性位点空间限制。基于结构的定点突变与突变酶的动力学分析相结合,确定了催化、底物结合和结构域-结构域结合所需的残基。基于此结构-功能分析,催化残基 Asp11、Asp13、Thr113 和 Lys147 以及金属结合残基 Asp171、Asn172 和 Glu47 被用作标记物,以确认通过序列搜索鉴定的 BT2127 直系同源物。该生物信息学分析表明,BT2127 直系同源物的生物学范围仅限于拟杆菌门/Chlorobi 门。BT2127 与其最接近的同源物 β-磷酸葡萄糖变位酶之间的差异的关键结构决定因素控制了离去基团的大小(磷酸对葡萄糖磷酸)以及 Asp 酸/碱在开环和闭环构象中的位置。HADSF 焦磷酸酶代表了细菌焦磷酸酶的第三种机制和折叠类型。