School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia.
J Phys Chem B. 2011 Oct 13;115(40):11693-9. doi: 10.1021/jp206532p. Epub 2011 Sep 22.
The deposition of gold nanoparticles on the magnetite (Fe(3)O(4)) surface is demonstrated through a molecular dynamics method. The simulated results show that an intermediate layer composed by such as a surfactant, polymer, or silica plays a key role in the formation of core/shell Fe(3)O(4)/Au nanostructures. The functional groups of the intermediate layer are crucial factors in depositing gold onto the Fe(3)O(4) surface via nonbonding interactions, in which the van der Waals and columbic forces will determine the strength of interaction toward the gold and iron oxide. Such interactions can affect the stability of the metal-coated nanocomposites and hence the functional properties. The nanocomposite is further investigated on the surface adsorption of amino acids (e.g., cysteine), which may be useful for functional exploration in biomedical applications.
通过分子动力学方法证明了金纳米粒子在磁铁矿(Fe3O4)表面上的沉积。模拟结果表明,由表面活性剂、聚合物或二氧化硅等组成的中间层在形成核/壳 Fe3O4/Au 纳米结构中起着关键作用。中间层的官能团是通过非键相互作用将金沉积到 Fe3O4 表面上的关键因素,其中范德华力和库仑力将决定金和氧化铁之间相互作用的强度。这种相互作用会影响金属涂层纳米复合材料的稳定性,从而影响其功能特性。进一步研究了纳米复合材料在氨基酸(如半胱氨酸)表面吸附的情况,这对于生物医学应用中的功能探索可能是有用的。