Park Hye-Young, Schadt Mark J, Wang Lingyan, Lim I-Im Stephanie, Njoki Peter N, Kim Soo Hong, Jang Min-Young, Luo Jin, Zhong Chuan-Jian
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA.
Langmuir. 2007 Aug 14;23(17):9050-6. doi: 10.1021/la701305f. Epub 2007 Jul 13.
The immobilization of proteins on gold-coated magnetic nanoparticles and the subsequent recognition of the targeted proteins provide an effective means for the separation of proteins via application of a magnetic filed. A key challenge is the ability to fabricate such nanoparticles with the desired core-shell nanostructure. In this article, we report findings of the fabrication and characterization of gold-coated iron oxide (Fe2O3 and Fe3O4) core@shell nanoparticles (Fe oxide@Au) toward novel functional biomaterials. A hetero-interparticle coalescence strategy has been demonstrated for fabricating Fe oxide@Au nanoparticles that exhibit controllable sizes ranging from 5 to 100 nm and high monodispersity. Composition and surface analyses have proven that the resulting nanoparticles consist of the Fe2O3 core and the Au shell. The magnetically active Fe oxide core and thiolate-active Au shell were shown to be viable for exploiting the Au surface protein-binding reactivity for bioassay and the Fe oxide core magnetism for magnetic bioseparation. These findings are entirely new and could form the basis for fabricating magnetic nanoparticles as biomaterials with tunable size, magnetism, and surface binding properties.
将蛋白质固定在金包覆磁性纳米颗粒上,随后识别目标蛋白质,为通过施加磁场分离蛋白质提供了一种有效方法。一个关键挑战是能够制造出具有所需核壳纳米结构的此类纳米颗粒。在本文中,我们报告了金包覆氧化铁(Fe2O3 和 Fe3O4)核壳纳米颗粒(氧化铁@金)用于新型功能生物材料的制备和表征结果。已证明一种异质颗粒聚结策略可用于制备尺寸在 5 至 100 nm 范围内可控且单分散性高的氧化铁@金纳米颗粒。组成和表面分析证明,所得纳米颗粒由 Fe2O3 核和金壳组成。具有磁活性的氧化铁核和具有硫醇盐活性的金壳被证明可用于利用金表面的蛋白质结合反应性进行生物测定,以及利用氧化铁核的磁性进行磁生物分离。这些发现全新,可为制造具有可调尺寸、磁性和表面结合特性的磁性纳米颗粒生物材料奠定基础。