Suppr超能文献

持续监测 Monro-Kellie 定律:是否可行?

Continuous monitoring of the Monro-Kellie doctrine: is it possible?

机构信息

Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom.

出版信息

J Neurotrauma. 2012 May 1;29(7):1354-63. doi: 10.1089/neu.2011.2018. Epub 2011 Nov 4.

Abstract

The Monro-Kellie doctrine describes the principle of homeostatic intracerebral volume regulation, which stipulates that the total volume of the parenchyma, cerebrospinal fluid, and blood remains constant. Hypothetically, a slow shift (e.g., brain edema development) in the irregular vasomotion-driven exchanges of these compartmental volumes may lead to increased intracranial hypertension. To evaluate this paradigm in a clinical setting and measure the processes involved in the regulation of systemic intracranial volume, we quantified cerebral blood flow velocity (CBFv) in the middle cerebral artery, arterial blood pressure (ABP), and intracranial pressure (ICP), in 238 brain-injured subjects. Relative changes in compartmental compliances C(a) (arterial) and C(i) (combined venous and CSF compartments) were mathematically estimated using these raw signals through time series analysis; C(a) and C(i) were used to compute an index of cerebral compliance (ICC) as a moving correlation coefficient between C(a) and C(i). Conceptually, a negative ICC would represent a functional Monro-Kellie doctrine by illustrating volumetric compensations between C(a) and C(i). Clinical observations show that Lundberg A-waves and arterial hypertension were associated with negative ICC, whereas in refractory intracranial hypertension, a positive ICC was observed. In subjects who died, ICC was significantly greater than in survivors (0.46 ± 0.027 versus 0.22 ± 0.017; p<0.01) over the first 5 days of intensive care. The mortality rate is 5% when ICC is less than 0, and 43% when above 0.7. ICC above 0.7 was associated with terminally elevated ICP (chi-square p=0.026). We propose that the Monro-Kellie doctrine can be monitored in real time to illustrate the state of intracranial volume regulation.

摘要

Monro-Kellie 学说描述了脑内容量调节的内稳态原则,即实质、脑脊液和血液的总体积保持恒定。理论上,这些分隔体积的不规则血管舒缩驱动交换的缓慢转移(例如脑肿胀发展)可能导致颅内压升高。为了在临床环境中评估这一模式,并测量与系统性颅内容量调节相关的过程,我们对 238 名脑损伤患者的大脑中动脉血流速度(CBFv)、动脉血压(ABP)和颅内压(ICP)进行了量化。通过时间序列分析,从这些原始信号中数学估计了分隔顺应性 C(a)(动脉)和 C(i)(静脉和 CSF 分隔的组合)的相对变化;使用 C(a)和 C(i)计算了脑顺应性指数(ICC),作为 C(a)和 C(i)之间的移动相关系数。从概念上讲,负 ICC 将代表功能性 Monro-Kellie 学说,表明 C(a)和 C(i)之间的容积补偿。临床观察表明,Lundberg A 波和动脉高血压与负 ICC 相关,而在难治性颅内高压中,观察到正 ICC。在 ICU 前 5 天,死亡患者的 ICC 明显高于存活患者(0.46±0.027 与 0.22±0.017;p<0.01)。当 ICC 小于 0 时,死亡率为 5%,当 ICC 大于 0.7 时,死亡率为 43%。ICC 大于 0.7 与终末期颅内压升高相关(卡方检验,p=0.026)。我们提出,Monro-Kellie 学说可以实时监测,以说明颅内容量调节的状态。

相似文献

1
Continuous monitoring of the Monro-Kellie doctrine: is it possible?
J Neurotrauma. 2012 May 1;29(7):1354-63. doi: 10.1089/neu.2011.2018. Epub 2011 Nov 4.
2
Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure.
J Cereb Blood Flow Metab. 2016 Aug;36(8):1338-50. doi: 10.1177/0271678X16648711. Epub 2016 May 12.
3
Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?
Acta Neurochir (Wien). 2004 Feb;146(2):131-41. doi: 10.1007/s00701-003-0187-y. Epub 2004 Feb 2.
6
Continuous monitoring of cerebrovascular pressure-reactivity in head injury.
Acta Neurochir Suppl. 1998;71:74-7. doi: 10.1007/978-3-7091-6475-4_23.
7
The Monro-Kellie Doctrine: A Review and Call for Revision.
AJNR Am J Neuroradiol. 2023 Jan;44(1):2-6. doi: 10.3174/ajnr.A7721. Epub 2022 Dec 1.
9
[Increased intracranial pressure and brain edema].
Med Klin Intensivmed Notfmed. 2013 Mar;108(2):157-69; quiz 170-1. doi: 10.1007/s00063-013-0232-4. Epub 2013 Mar 17.
10
A hotbed of medical innovation: George Kellie (1770-1829), his colleagues at Leith and the Monro-Kellie doctrine.
J Med Biogr. 2014 May;22(2):93-100. doi: 10.1177/0967772013479271. Epub 2013 Sep 16.

引用本文的文献

1
Transcranial ultrasound in the critically ill patient: a narrative review.
Intensive Care Med Exp. 2025 Aug 18;13(1):86. doi: 10.1186/s40635-025-00787-z.
2
Monro-Kellie 4.0: moving from intracranial pressure to intracranial dynamics.
Crit Care. 2025 Jun 5;29(1):229. doi: 10.1186/s13054-025-05476-7.
3
Multicenter Study Examining Temporal Trends in Traumatic Intracranial Hemorrhage Over Six Years Using Joinpoint Regression.
Neurotrauma Rep. 2024 Oct 9;5(1):999-1008. doi: 10.1089/neur.2024.0097. eCollection 2024.
4
Advances and controversies in meningeal biology.
Nat Neurosci. 2024 Nov;27(11):2056-2072. doi: 10.1038/s41593-024-01701-8. Epub 2024 Sep 27.
5
Intraorbital pressure-volume characteristics in a piglet model: In vivo pilot study.
PLoS One. 2024 Jan 12;19(1):e0296780. doi: 10.1371/journal.pone.0296780. eCollection 2024.
7
Glucocorticoids modify intracranial pressure in freely moving rats.
Fluids Barriers CNS. 2023 May 25;20(1):35. doi: 10.1186/s12987-023-00439-y.
8
9
Intracranial Pressure Dysfunction Following Severe Intracerebral Hemorrhage in Middle-Aged Rats.
Transl Stroke Res. 2023 Dec;14(6):970-986. doi: 10.1007/s12975-022-01102-8. Epub 2022 Nov 11.
10
Waveform Morphology as a Surrogate for ICP Monitoring: A Comparison Between an Invasive and a Noninvasive Method.
Neurocrit Care. 2022 Aug;37(1):219-227. doi: 10.1007/s12028-022-01477-4. Epub 2022 Mar 24.

本文引用的文献

1
Changes in cerebral compartmental compliances during mild hypocapnia in patients with traumatic brain injury.
J Neurotrauma. 2011 Jun;28(6):889-96. doi: 10.1089/neu.2010.1377. Epub 2011 Apr 12.
2
The monitoring of relative changes in compartmental compliances of brain.
Physiol Meas. 2009 Jul;30(7):647-59. doi: 10.1088/0967-3334/30/7/009. Epub 2009 Jun 5.
3
Index of cerebrospinal compensatory reserve in hydrocephalus.
Neurosurgery. 2009 Mar;64(3):494-501; discussion 501-2. doi: 10.1227/01.NEU.0000338434.59141.89.
4
Value of phase contrast magnetic resonance imaging for investigation of cerebral hydrodynamics.
J Neuroradiol. 2006 Dec;33(5):292-303. doi: 10.1016/s0150-9861(06)77287-x.
6
Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system.
Neurosurgery. 2005 Apr;56(4):693-8; discussion 693-8. doi: 10.1227/01.neu.0000156609.95596.24.
7
Relation of structure to function of the tissues of the wall of blood vessels.
Physiol Rev. 1954 Oct;34(4):619-42. doi: 10.1152/physrev.1954.34.4.619.
8
Specialist neurocritical care and outcome from head injury.
Intensive Care Med. 2002 May;28(5):547-53. doi: 10.1007/s00134-002-1235-4. Epub 2002 Feb 14.
9
Cerebral autoregulation following head injury.
J Neurosurg. 2001 Nov;95(5):756-63. doi: 10.3171/jns.2001.95.5.0756.
10
The Monro-Kellie hypothesis: applications in CSF volume depletion.
Neurology. 2001 Jun 26;56(12):1746-8. doi: 10.1212/wnl.56.12.1746.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验