Suppr超能文献

残余迭代分解(RIDE):一种基于单试潜伏期变异性分离 ERP 成分的新方法。

Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials.

机构信息

Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

出版信息

Psychophysiology. 2011 Dec;48(12):1631-47. doi: 10.1111/j.1469-8986.2011.01269.x. Epub 2011 Sep 6.

Abstract

Event-related brain potentials (ERPs) are important research tools because they provide insights into mental processing at high temporal resolution. Their usefulness, however, is limited by the need to average over a large number of trials, sacrificing information about the trial-by-trial variability of latencies or amplitudes of specific ERP components. Here we propose a novel method based on an iteration strategy of the residues of averaged ERPs (RIDE) to separate latency-variable component clusters. The separated component clusters can then serve as templates to estimate latencies in single trials with high precision. By applying RIDE to data from a face-priming experiment, we separate priming effects and show that they are robust against latency shifts and within-condition variability. RIDE is useful for a variety of data sets that show different degrees of variability and temporal overlap between ERP components.

摘要

事件相关脑电位(ERPs)是重要的研究工具,因为它们可以提供有关高时间分辨率的心理处理的见解。然而,它们的有用性受到需要对大量试验进行平均的限制,从而牺牲了有关特定 ERP 成分潜伏期或幅度的试验间可变性的信息。在这里,我们提出了一种基于平均 ERP 残差的迭代策略(RIDE)的新方法,以分离潜伏期可变的成分簇。然后,分离的成分簇可以用作模板,以高精度估计单个试验的潜伏期。通过将 RIDE 应用于面孔启动实验的数据,我们分离了启动效应,并表明它们对潜伏期变化和条件内可变性具有鲁棒性。RIDE 对于表现出不同程度的变异性和 ERP 成分之间的时间重叠的各种数据集都很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验