Genome Resource Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
Plant J. 2012 Jan;69(1):126-40. doi: 10.1111/j.1365-313X.2011.04777.x. Epub 2011 Oct 25.
The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.
根系是植物生长潜力的关键决定因素,因为它具有重要的功能,例如吸收水分和养分、结构支撑以及与共生生物的相互作用。因此,阐明根系发育和功能的分子机制对于提高植物生产力是必要的,特别是对于作物植物,包括水稻(Oryza sativa)。作为全面了解根系的初始步骤,我们通过激光显微切割和微阵列组合方法对水稻根进行了大规模转录组分析。冠根沿纵轴分为八个发育阶段,在两个不同的发育阶段,分为三种径向组织类型:表皮、外皮层和厚壁组织;皮层;以及内皮层、中柱鞘和中柱。我们总共分析了 38 个微阵列数据,鉴定了 22297 个基因,对应于 17010 个基因座,这些基因座具有足够的信号强度以及发育和组织类型特异性的转录组特征。此外,我们阐明了与根冠功能和侧根形成相关的基因网络,并进一步揭示了生长素、细胞分裂素、油菜素内酯和乙烯等植物激素的拮抗和协同作用,这是基于与植物激素生物合成和信号转导相关的基因表达模式。转运蛋白基因的表达谱不仅定义了水和养分吸收和运输的主要部位,而且还定义了从根际到木质部导管的径向运输系统的独特特征。所有数据都可以从我们的基因表达谱数据库 RiceXPro(http://ricexpro.dna.affrc.go.jp)中获取,从而为理解作物植物根系发育的分子机制提供了有用的信息。