Suppr超能文献

比较栽培稻和野生稻耐盐性中 - 介导的 Na 排斥的必要性。

Comparing Essentiality of -Mediated Na Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species.

机构信息

Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.

International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China.

出版信息

Int J Mol Sci. 2022 Aug 31;23(17):9900. doi: 10.3390/ijms23179900.

Abstract

Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na/H antiporter encoded by () gene and driven by a PM H-ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na. As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in species by using two contrasting pairs of cultivated () and wild rice species ( and ). Accordingly, dose- and age-dependent Na and H fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of -encoded Na/H antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (4-6-fold) greater net Na efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na/H exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na efflux was higher in tolerant genotypes; however, the activity of Na/H exchanger was 2-3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of , and were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of transcript detected in salt-tolerant wild rice genotype (5-6-fold increased transcript level) followed by another wild rice, . There was no significant difference in expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level.

摘要

土壤盐度是影响植物生长和发育的主要限制因素。水稻是全球一半以上人口的主食,但对盐度极为敏感。在几种已知的机制中,植物排除细胞质 Na 的能力与不同植物物种的耐盐性密切相关。这种排除是由质膜(PM)Na/H 反向转运蛋白(由 基因编码)介导的,由 PM H-ATPase 产生的质子梯度驱动。然而,由于水稻独特的根解剖结构和 Na 旁路流的存在,野生和栽培水稻物种中这一机制的运作程度尚不清楚。由于野生稻种为可能的非生物胁迫耐受性的基因渗入提供了丰富的遗传多样性来源,因此我们通过使用两对具有对比性的栽培稻(IR 和 )和野生稻种( 和 ),来研究 种的耐盐性的生理和分子基础。相应地,使用非侵入性离子选择性振动微电极(MIFE 技术)测量剂量和年龄依赖性的 Na 和 H 通量,以测量 -编码的 Na/H 反向转运蛋白基因的潜在活性。与文献中报道的 GUS 染色数据一致,与成熟根区(MZ)相比,水稻品种的根伸长区(EZ)的净 Na 外排率高 (4-6 倍)。药理学实验表明,阿米洛利可抑制根 EZ 中超过 90%的 Na 外排,表明根 EZ 中 Na/H 交换器活性的可能参与。在每组(栽培组与野生组)中,在耐受基因型中,阿米洛利敏感的 Na 外排量更高;然而,与野生型相比,栽培稻的 Na/H 交换器活性高 2-3 倍。在所有测试的基因型中,盐胁迫处理 24 h 后, 、 和 的基因表达水平上调,在耐盐野生稻品种 中检测到的 转录本水平最高(5-6 倍增加的转录本水平),其次是另一个野生稻 。在 0 和 24 h 盐暴露下,在栽培稻(IR1-耐受和 IR29-敏感)中未观察到 的表达有显著差异。我们的研究结果表明,耐盐栽培稻比野生稻更依赖于细胞质 Na 排除机制来应对盐胁迫,但它的运作似乎是在翻译后而不是转录水平上进行调节的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/914e/9456175/e50d55ce20ea/ijms-23-09900-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验