Suppr超能文献

外位点相互作用影响基质金属蛋白酶的胶原特异性。

Exosite interactions impact matrix metalloproteinase collagen specificities.

机构信息

Department of Periodontics, University of Texas Health Science Center, San Antonio, Texas 78229, USA.

出版信息

J Biol Chem. 2011 Oct 28;286(43):37535-42. doi: 10.1074/jbc.M111.273391. Epub 2011 Sep 6.

Abstract

Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I-III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769-783 from type I-III collagens, the second inserted α1(II) collagen residues 763-768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784-792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased k(cat)/K(m) and k(cat) for MMP-1. MMP-13 showed the opposite behavior with a decreased k(cat)/K(m) and k(cat) and a greatly improved K(m) in response to the C-terminal residues. Insertion of the N-terminal residues enhanced k(cat)/K(m) and k(cat) for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced K(m) and dramatically decreased k(cat), resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs.

摘要

基质金属蛋白酶(MMP)家族成员在体内选择性地切割胶原蛋白。然而,促进与特定 MMP 相互作用的底物结构决定因素尚未很好地定义。我们假设位于生理切割位点 N-或 C-末端的 I 型-III 型胶原蛋白序列在 MMP-1、MMP-2、MMP-8、MMP-13 和 MMP-14/膜型 1(MT1)-MMP 之间介导底物选择性。本文评估了三种荧光三螺旋肽(fTHP)水解的酶动力学。第一个 fTHP 包含 I 型-III 型胶原蛋白的共有残基 769-783,第二个插入的 α1(II)胶原蛋白残基 763-768 在共有序列的 N-末端,第三个插入的 α1(II)胶原蛋白残基 784-792 在共有序列的 C-末端。我们的分析表明,插入 C 末端残基显著增加了 MMP-1 的 k(cat)/K(m)和 k(cat)。MMP-13 的行为则相反,k(cat)/K(m)和 k(cat)降低,K(m)大大提高,对 C 末端残基有反应。插入 N 末端残基增强了 MMP-8 和 MT1-MMP 的 k(cat)/K(m)和 k(cat)。对于 MMP-2,C 末端残基增强了 K(m),并显著降低了 k(cat),导致整体活性降低。这些活性和动力学参数的变化很好地代表了 MMP-8、MMP-13 和 MT1-MMP 的胶原蛋白偏好。因此,与次级结合位点(外显子)的相互作用有助于指导这些酶的特异性。然而,fTHP 研究并没有再现 MMP-1 的胶原蛋白偏好。MMP-1 对 III 型胶原蛋白的偏好似乎主要基于 III 型胶原蛋白水解位点与 I 型和 II 型相比的灵活性。进一步表征决定 MMP 与胶原蛋白底物相互作用的外显子决定因素,应有助于开发针对特定 MMP 的药物治疗。

相似文献

1
Exosite interactions impact matrix metalloproteinase collagen specificities.
J Biol Chem. 2011 Oct 28;286(43):37535-42. doi: 10.1074/jbc.M111.273391. Epub 2011 Sep 6.
2
Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates.
Biochemistry. 2001 May 15;40(19):5795-803. doi: 10.1021/bi0101190.
3
Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9.
J Biol Chem. 2003 May 16;278(20):18140-5. doi: 10.1074/jbc.M211330200. Epub 2003 Mar 17.
4
Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases.
J Biol Chem. 2000 May 5;275(18):13282-90. doi: 10.1074/jbc.275.18.13282.
7
The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.
J Biol Chem. 2014 Jan 24;289(4):1981-92. doi: 10.1074/jbc.M113.513408. Epub 2013 Dec 2.
8
Selective modulation of matrix metalloproteinase 9 (MMP-9) functions via exosite inhibition.
J Biol Chem. 2008 Jul 18;283(29):20087-95. doi: 10.1074/jbc.M801438200. Epub 2008 May 22.
10
Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library.
J Biol Chem. 2000 Oct 6;275(40):31422-7. doi: 10.1074/jbc.M004538200.

引用本文的文献

1
Dysregulation of autophagy during photoaging reduce oxidative stress and inflammatory damage caused by UV.
Front Pharmacol. 2025 May 12;16:1562845. doi: 10.3389/fphar.2025.1562845. eCollection 2025.
2
Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease.
Int J Mol Sci. 2023 Dec 4;24(23):17120. doi: 10.3390/ijms242317120.
4
Crustacean Proteases and Their Application in Debridement.
Trop Life Sci Res. 2020 Jul;31(2):187-209. doi: 10.21315/tlsr2020.31.2.10. Epub 2020 Aug 6.
6
Anti‑photoaging effect of fermented agricultural by‑products on ultraviolet B‑irradiated hairless mouse skin.
Int J Mol Med. 2019 Aug;44(2):559-568. doi: 10.3892/ijmm.2019.4242. Epub 2019 Jun 12.
7
Dissecting MMP P' and P' subsite sequence preferences, utilizing a positional scanning, combinatorial triple-helical peptide library.
J Biol Chem. 2018 Oct 26;293(43):16661-16676. doi: 10.1074/jbc.RA118.003266. Epub 2018 Sep 5.
9
Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer.
J Cell Biochem. 2017 Nov;118(11):3531-3548. doi: 10.1002/jcb.26185. Epub 2017 Jul 17.
10
Matrix Metalloproteinases in Myocardial Infarction and Heart Failure.
Prog Mol Biol Transl Sci. 2017;147:75-100. doi: 10.1016/bs.pmbts.2017.02.001. Epub 2017 Mar 18.

本文引用的文献

1
The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.
J Biol Chem. 2011 Mar 4;286(9):7587-600. doi: 10.1074/jbc.M110.178434. Epub 2010 Dec 30.
2
3
Molecular mechanism of type I collagen homotrimer resistance to mammalian collagenases.
J Biol Chem. 2010 Jul 16;285(29):22276-81. doi: 10.1074/jbc.M110.102079. Epub 2010 May 12.
4
To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition.
Biochim Biophys Acta. 2010 Jan;1803(1):72-94. doi: 10.1016/j.bbamcr.2009.08.006. Epub 2009 Aug 25.
5
Collagens.
Cell Tissue Res. 2010 Jan;339(1):247-57. doi: 10.1007/s00441-009-0844-4. Epub 2009 Aug 20.
6
Matrix metalloproteinase proteomics: substrates, targets, and therapy.
Curr Opin Cell Biol. 2009 Oct;21(5):645-53. doi: 10.1016/j.ceb.2009.06.006. Epub 2009 Jul 16.
7
Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity.
J Biol Chem. 2009 Sep 4;284(36):24017-24. doi: 10.1074/jbc.M109.016873. Epub 2009 Jul 1.
8
Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition?
Biochim Biophys Acta. 2010 Jan;1803(1):29-38. doi: 10.1016/j.bbamcr.2009.04.010. Epub 2009 May 4.
9
Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen.
Matrix Biol. 2009 Jul;28(6):373-9. doi: 10.1016/j.matbio.2009.04.009. Epub 2009 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验