Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
J Biol Chem. 2011 Dec 30;286(52):44821-32. doi: 10.1074/jbc.M111.249177. Epub 2011 Sep 6.
The γ-glutamyl carboxylase converts Glu to carboxylated Glu (Gla) to activate a large number of vitamin K-dependent proteins with diverse functions, and this broad physiological impact makes it critical to understand the mechanism of carboxylation. Gla formation is thought to occur in two independent steps (i.e. Glu deprotonation to form a carbanion that then reacts with CO(2)), based on previous studies showing unresponsiveness of Glu deprotonation to CO(2). However, our recent studies on the kinetic properties of a variant enzyme (H160A) showing impaired Glu deprotonation prompted a reevaluation of this model. Glu deprotonation monitored by tritium release from the glutamyl γ-carbon was dependent upon CO(2), and a proportional increase in both tritium release and Gla formation occurred over a range of CO(2) concentrations. This discrepancy with the earlier studies using microsomes is probably due to the known accessibility of microsomal carboxylase to water, which reprotonates the carbanion. In contrast, tritium incorporation experiments with purified carboxylase showed very little carbanion reprotonation and consequently revealed the dependence of Glu deprotonation on CO(2). Cyanide stimulated Glu deprotonation and carbanion reprotonation to the same extent in wild type enzyme but not in the H160A variant. Glu deprotonation that depends upon CO(2) but that also occurs when water or cyanide are present strongly suggests a concerted mechanism facilitated by His-160 in which an electrophile accepts the negative charge on the developing carbanion. This revised mechanism provides important insight into how the carboxylase catalyzes the reaction by avoiding the formation of a high energy discrete carbanion.
γ-谷氨酰羧化酶将谷氨酸转化为羧化谷氨酸(Gla),以激活具有多种功能的大量维生素 K 依赖性蛋白,这种广泛的生理影响使得理解羧化作用的机制至关重要。根据先前的研究表明谷氨酸的去质子化对 CO2 无反应性,Gla 的形成被认为发生在两个独立的步骤中(即谷氨酸去质子化形成碳负离子,然后与 CO2 反应)。然而,我们最近对一种变体酶(H160A)的动力学特性研究表明,谷氨酸的去质子化受到损害,这促使我们重新评估了该模型。通过从谷氨酰基γ-碳释放氚来监测谷氨酸的去质子化,依赖于 CO2,并且在 CO2 浓度范围内,氚释放和 Gla 形成都呈比例增加。与先前使用微粒体的研究存在差异,这可能是由于微粒体羧化酶已知可与水接触,从而使碳负离子再质子化。相比之下,用纯化的羧化酶进行氚掺入实验显示出很少的碳负离子再质子化,因此揭示了谷氨酸的去质子化依赖于 CO2。氰化物以相同的程度刺激野生型酶中的谷氨酸去质子化和碳负离子再质子化,但在 H160A 变体中则不然。依赖于 CO2 的谷氨酸去质子化,同时在存在水或氰化物时也会发生,强烈表明存在一种由 His-160 促进的协同机制,其中亲电试剂接受发展中的碳负离子的负电荷。这种修订后的机制为羧化酶如何通过避免形成高能离散碳负离子来催化反应提供了重要的见解。