Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6000, USA.
Antimicrob Agents Chemother. 2011 Nov;55(11):5294-9. doi: 10.1128/AAC.05317-11. Epub 2011 Sep 6.
The relationships among the dose of tenofovir disoproxil fumarate (TDF), tenofovir (TFV) plasma concentrations, and intracellular TFV diphosphate (TFV-DP) concentrations are poorly understood. Our objective was to characterize TFV and TFV-DP relationships. Data were pooled from two studies in HIV-infected persons (n = 55) on stable antiretroviral therapy. TFV and TFV-DP were measured with validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods. Nonlinear mixed effects modeling (NONMEM 7) was used to develop the population model and explore the influence of covariates on TFV. A sequential analysis approach was utilized. A two-compartment model with first-order absorption best described TFV PK (FOCEI). An indirect stimulation of response model best described TFV-DP, where formation of TFV-DP was driven by plasma TFV concentration. Final plasma population estimates were as follows: absorption rate constant, 1.03 h(-1); apparent clearance (CL/F), 42 liters/h (33.5% interindividual variability [IIV]); intercompartment clearance, 181 liters/h; apparent central distribution volume (Vc/F), 273 liters (64.8% IIV); and apparent peripheral distribution volume (Vp/F), 440 liters (46.5% IIV). Creatinine clearance was the most significant covariate on CL/F and Vc/F. The correlation between CL/F and Vc/F was 0.553. The indirect response model for TFV-DP resulted in estimates of the maximal intracellular concentration (E(max)), the TFV concentration producing 50% of E(max) (EC(50)), and the intracellular elimination rate constant (k(out)) of 300 fmol/10(6) cells (82% IIV), 100 ng/ml (106% IIV), and 0.008 h(-1), respectively. The estimated k(out) gave an 87-h TFV-DP half-life. A predictive check assessment indicated satisfactory model performance. This model links formation of TFV-DP with plasma TFV concentrations and should facilitate more informed investigations of TFV clinical pharmacology.
替诺福韦二吡呋酯(TDF)剂量、替诺福韦(TFV)血浆浓度和细胞内 TFV 二磷酸(TFV-DP)浓度之间的关系尚未完全阐明。我们的目的是描述 TFV 和 TFV-DP 之间的关系。从两项接受稳定抗逆转录病毒治疗的 HIV 感染者(n=55)的研究中汇集数据。使用经过验证的液相色谱/串联质谱(LC/MS/MS)方法测量 TFV 和 TFV-DP。采用非线性混合效应模型(NONMEM 7)建立群体模型并探索协变量对 TFV 的影响。采用序贯分析方法。TFV PK (FOCEI)最好用两室模型和一级吸收来描述。TFV-DP 最好用间接刺激反应模型来描述,其中 TFV-DP 的形成由血浆 TFV 浓度驱动。最终的血浆群体估计值如下:吸收速率常数,1.03 h(-1);表观清除率(CL/F),42 升/小时(个体间变异 33.5%);隔室间清除率,181 升/小时;表观中央分布容积(Vc/F),273 升(个体间变异 64.8%);表观外周分布容积(Vp/F),440 升(个体间变异 46.5%)。肌酐清除率是 CL/F 和 Vc/F 的最显著协变量。CL/F 和 Vc/F 之间的相关性为 0.553。TFV-DP 的间接反应模型得出了最大细胞内浓度(E(max))、产生 50%E(max)的 TFV 浓度(EC(50))和细胞内消除速率常数(k(out))的估计值,分别为 300 fmol/10(6)细胞(个体间变异 82%)、100ng/ml(个体间变异 106%)和 0.008 h(-1)。估计的 k(out)给出了 TFV-DP 的半衰期为 87 小时。预测性检查评估表明模型性能良好。该模型将 TFV-DP 的形成与血浆 TFV 浓度联系起来,应该有助于更深入地研究 TFV 的临床药理学。