Suppr超能文献

视网膜变性的分子遗传学:从果蝇视角看

Molecular genetics of retinal degeneration: A Drosophila perspective.

作者信息

Shieh Bih-Hwa

机构信息

Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN USA.

出版信息

Fly (Austin). 2011 Oct-Dec;5(4):356-68. doi: 10.4161/fly.5.4.17809. Epub 2011 Sep 7.

Abstract

Inherited retinal degeneration in Drosophila has been explored for insights into similar processes in humans. Based on the mechanisms, I divide these mutations in Drosophila into three classes. The first consists of genes that control the specialization of photoreceptor cells including the morphogenesis of visual organelles  (rhabdomeres) that house the visual signaling proteins. The second class contains genes that regulate the activity or level of the major rhodopsin, Rh1, which is the light sensor and also provides a structural role for the maintenance of rhabdomeres. Some mutations in Rh1 (NinaE) are dominant due to constitutive activity or folding defects, like autosomal dominant retinitis pigmentosa (ADRP) in humans. The third class consists of genes that control the Ca ( 2+) influx directly or indirectly by promoting the turnover of the second messenger and regeneration of PIP 2, or mediate the Ca ( 2+) -dependent regulation of the visual response. These gene products are critical for the increase in cytosolic Ca ( 2+ ) following light stimulation to initiate negative regulatory events. Here I will focus on the signaling mechanisms underlying the degeneration in norpA, and in ADRP-type NinaE mutants that produce misfolded Rh1. Accumulation of misfolded Rh1 in the ER triggers the unfolded protein response (UPR), while endosomal accumulation of activated Rh1 may initiate autophagy in norpA. Both autophagy and the UPR are beneficial for relieving defective endosomal trafficking and the ER stress, respectively. However, when photoreceptors fail to cope with the persistence of these stresses, a cell death program is activated leading to retinal degeneration.

摘要

人们已对果蝇的遗传性视网膜变性展开研究,以深入了解人类的类似过程。基于其机制,我将果蝇中的这些突变分为三类。第一类包括控制光感受器细胞特化的基因,这些基因涉及容纳视觉信号蛋白的视觉细胞器(微绒毛)的形态发生。第二类包含调节主要视紫红质Rh1活性或水平的基因,Rh1是光传感器,同时也为维持微绒毛发挥结构作用。Rh1(NinaE)中的一些突变由于组成性活性或折叠缺陷而呈显性,类似于人类的常染色体显性视网膜色素变性(ADRP)。第三类由通过促进第二信使的周转和磷脂酰肌醇二磷酸(PIP2)的再生直接或间接控制钙离子(Ca2+)内流,或介导视觉反应的钙离子依赖性调节的基因组成。这些基因产物对于光刺激后胞质钙离子(Ca2+)增加以启动负调控事件至关重要。在此,我将重点关注norpA以及产生错误折叠Rh1的ADRP型NinaE突变体中变性的信号传导机制。错误折叠的Rh1在内质网中的积累会触发未折叠蛋白反应(UPR),而活化的Rh1在内体中的积累可能会在norpA中引发自噬。自噬和UPR分别有利于缓解有缺陷的内体运输和内质网应激。然而,当光感受器无法应对这些应激的持续存在时,细胞死亡程序就会被激活,导致视网膜变性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验