Suppr超能文献

光感转化与光感受器的演化。

Phototransduction and the evolution of photoreceptors.

机构信息

Departments of Physiological Science and Ophthalmology, UCLA, Los Angeles, CA 90095-7000, USA.

出版信息

Curr Biol. 2010 Feb 9;20(3):R114-24. doi: 10.1016/j.cub.2009.12.006.

Abstract

Photoreceptors in metazoans can be grouped into two classes, with their photoreceptive membrane derived either from cilia or microvilli. Both classes use some form of the visual pigment protein opsin, which together with 11-cis retinaldehyde absorbs light and activates a G-protein cascade, resulting in the opening or closing of ion channels. Considerable attention has recently been given to the molecular evolution of the opsins and other photoreceptor proteins; much is also known about transduction in the various photoreceptor types. Here we combine this knowledge in an attempt to understand why certain photoreceptors might have conferred particular selective advantages during evolution. We suggest that microvillar photoreceptors became predominant in most invertebrate species because of their single-photon sensitivity, high temporal resolution, and large dynamic range, and that rods and a duplex retina provided primitive chordates and vertebrates with similar sensitivity and dynamic range, but with a smaller expenditure of ATP.

摘要

动物的光感受器可分为两类,其感光膜来源于纤毛或微绒毛。这两类都使用某种形式的视觉色素蛋白视蛋白,它与 11-顺式视黄醛一起吸收光并激活 G 蛋白级联反应,导致离子通道的打开或关闭。最近人们对视蛋白和其他光感受器蛋白的分子进化给予了相当多的关注;对于各种光感受器类型的转导也有很多了解。在这里,我们将这些知识结合起来,试图理解为什么某些光感受器在进化过程中可能具有特殊的选择优势。我们认为,由于单光子灵敏度、高时间分辨率和大动态范围,微绒毛光感受器在大多数无脊椎动物物种中占主导地位,而棒状细胞和双合视网膜为原始脊索动物和脊椎动物提供了类似的灵敏度和动态范围,但 ATP 的消耗更小。

相似文献

1
Phototransduction and the evolution of photoreceptors.光感转化与光感受器的演化。
Curr Biol. 2010 Feb 9;20(3):R114-24. doi: 10.1016/j.cub.2009.12.006.
2
Evolution and the origin of the visual retinoid cycle in vertebrates.脊椎动物视觉类视黄醛循环的进化与起源
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2897-910. doi: 10.1098/rstb.2009.0043.
3
Light and the evolution of vision.光与视觉的进化
Eye (Lond). 2016 Feb;30(2):173-8. doi: 10.1038/eye.2015.220. Epub 2015 Nov 6.
4
Evolution of phototransduction, vertebrate photoreceptors and retina.光传导的进化、脊椎动物感光器和视网膜。
Prog Retin Eye Res. 2013 Sep;36:52-119. doi: 10.1016/j.preteyeres.2013.06.001. Epub 2013 Jun 19.
7
Molecular evolution of proteins involved in vertebrate phototransduction.脊椎动物光转导相关蛋白质的分子进化
Comp Biochem Physiol B Biochem Mol Biol. 2002 Dec;133(4):509-22. doi: 10.1016/s1096-4959(02)00127-6.

引用本文的文献

1
Molecular diversity of protostome non-visual opsin arthropsin.原口动物非视觉视蛋白节肢视蛋白的分子多样性。
iScience. 2025 Jun 24;28(7):112989. doi: 10.1016/j.isci.2025.112989. eCollection 2025 Jul 18.
7
Perspectives of traditional herbal medicines in treating retinitis pigmentosa.传统草药治疗视网膜色素变性的前景
Front Med (Lausanne). 2024 Dec 6;11:1468230. doi: 10.3389/fmed.2024.1468230. eCollection 2024.

本文引用的文献

1
Phototransduction motifs and variations.光转导基序与变异
Cell. 2009 Oct 16;139(2):246-64. doi: 10.1016/j.cell.2009.09.029.
2
Evolution of vertebrate retinal photoreception.脊椎动物视网膜光感受器的进化。
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2911-24. doi: 10.1098/rstb.2009.0102.
3
The evolution of eyes and visually guided behaviour.眼睛与视觉引导行为的进化
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2833-47. doi: 10.1098/rstb.2009.0083.
4
Drosophila photoreceptors and signaling mechanisms.果蝇光感受器与信号传导机制。
Front Cell Neurosci. 2009 Jun 11;3:2. doi: 10.3389/neuro.03.002.2009. eCollection 2009.
5
The primary cilium as a complex signaling center.作为复杂信号中心的初级纤毛。
Curr Biol. 2009 Jul 14;19(13):R526-35. doi: 10.1016/j.cub.2009.05.025.
6
Light-transduction in melanopsin-expressing photoreceptors of Amphioxus.文昌鱼中表达黑视蛋白的光感受器的光转导
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9081-6. doi: 10.1073/pnas.0900708106. Epub 2009 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验