Département de mathématiques et statistique, Université Laval, 1045 Av. dela médecine, Local 1056, Québec, QC G1V 0A6, Canada.
Stat Med. 2011 Nov 20;30(26):3137-48. doi: 10.1002/sim.4319. Epub 2011 Sep 5.
In this paper, we define a modified version τ(b) of Kendall's tau to measure the association in a pair (X,Y) of random variables subject to fixed left censoring due to known lower detection limits. We provide a nonparametric estimator of τ(b) and investigate its asymptotic properties. We then assume an Archimedean copula for (X,Y) and express τ(b) in terms of the copula parameter α and the censoring fractions. We deduce estimators for α and for the global Kendall's tau. We develop a goodness-of-fit test for the assumed copula. We evaluate the finite-sample performance of the proposed methods by simulations and illustrate their use with a real data set on plasma and saliva viral loads.
在本文中,我们定义了一个修正版的 Kendall's tau τ(b),用于衡量在受到已知下限检测限制的固定左截断的情况下,一对随机变量 (X,Y) 的关联。我们提供了τ(b)的非参数估计量,并研究了它的渐近性质。然后,我们假设 (X,Y) 服从阿基米德 Copula,并将τ(b)表示为 Copula 参数α和截断分数的函数。我们推导出了α和全局 Kendall's tau 的估计量。我们为所假设的 Copula 开发了一个拟合优度检验。我们通过模拟评估了所提出方法的有限样本性能,并使用血浆和唾液病毒载量的真实数据集说明了它们的应用。