Lakhal-Chaieb Lajmi, Duchesne Thierry
Département de mathématiques et de statistique, Université Laval, Québec, QC, G1V 0A6, Canada.
Lifetime Data Anal. 2017 Oct;23(4):517-532. doi: 10.1007/s10985-016-9371-2. Epub 2016 Jun 23.
This paper proposes a new joint model for pairs of failure times in the presence of a cure fraction. The proposed model relaxes some of the assumptions required by the existing approaches. This allows us to add some flexibility to the dependence structure and to widen the range of association measures that can be defined. A numerically stable iterative algorithm based on estimating equations is proposed to estimate the parameters. The estimators are shown to be consistent and asymptotically normal. Simulations show that they have good finite-sample properties. The added flexibility of the proposal is illustrated with an application to data from a diabetes retinopathy study.
本文提出了一种在存在治愈比例的情况下用于成对失效时间的新联合模型。所提出的模型放宽了现有方法所需的一些假设。这使我们能够在相依结构中增加一些灵活性,并拓宽可定义的关联度量的范围。提出了一种基于估计方程的数值稳定迭代算法来估计参数。结果表明,这些估计量是一致的且渐近正态。模拟显示它们具有良好的有限样本性质。通过将其应用于糖尿病视网膜病变研究的数据,说明了该提议增加的灵活性。