Suppr超能文献

γ-分泌酶抑制剂处理胶质母细胞瘤肿瘤干细胞后 N 连接糖蛋白的差异分析研究。

Differential profiling studies of N-linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor.

机构信息

Program of Bioinformatics, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA.

出版信息

Proteomics. 2011 Oct;11(20):4021-8. doi: 10.1002/pmic.201100014. Epub 2011 Sep 8.

Abstract

We have recently demonstrated that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post-translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N-linked glycoproteins from cell lysates using multi-lectin chromatography and label-free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC- and GSI-treated groups, respectively, filtered by a combination of decoy database searching and Trans-Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi-lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.

摘要

我们最近的研究表明,通过减少增殖和诱导细胞凋亡,γ-分泌酶抑制剂(GSI)阻断 Notch 通路可以耗尽多形性胶质母细胞瘤(GBM)中的癌症干细胞(CSC)。然而, Notch 信号的操纵如何诱导翻译后修饰(如糖基化)的改变的详细机制尚未被研究。在此,我们提出了一个差异分析工作,以检测药物处理后 GBM CSC 中糖基化模式的变化。通过在活细胞上进行凝集素微阵列,对细胞表面糖结构的差异进行快速筛选,然后使用多凝集素色谱和无标记定量质谱分析检测细胞裂解物中的 N-连接糖蛋白。通过结合诱饵数据库搜索和跨蛋白质组学管道(TPP)处理,在 CSC 和 GSI 处理组中分别鉴定到 51 个和 52 个糖蛋白。尽管从凝集素微阵列实验中未检测到明显变化,但在经过多凝集素柱筛选后,捕获到了 7 个具有高可信度的差异表达糖蛋白,其中包括参与糖基化加工的关键酶。改变的糖蛋白的功能注释表明,GSI 处理后 CSC 向肿瘤形成能力较低的表型转化。

相似文献

2
Dose-dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor.
Proteomics. 2011 Dec;11(23):4529-40. doi: 10.1002/pmic.201000730. Epub 2011 Oct 24.
4
Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch.
Neuro Oncol. 2012 Oct;14(10):1215-26. doi: 10.1093/neuonc/nos157. Epub 2012 Sep 7.
6
Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy.
Biochem Biophys Res Commun. 2014 Feb 21;444(4):670-5. doi: 10.1016/j.bbrc.2014.01.164. Epub 2014 Feb 3.
9
Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells.
Stem Cell Reports. 2017 Dec 12;9(6):1948-1960. doi: 10.1016/j.stemcr.2017.10.028. Epub 2017 Nov 30.
10
Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells.
J Neurooncol. 2015 Jan;121(2):239-50. doi: 10.1007/s11060-014-1630-z. Epub 2014 Oct 8.

引用本文的文献

1
Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy.
Biomark Res. 2023 May 26;11(1):54. doi: 10.1186/s40364-023-00491-8.
2
Mass Spectrometry-Based Glycoproteomics and Prostate Cancer.
Int J Mol Sci. 2021 May 14;22(10):5222. doi: 10.3390/ijms22105222.
3
STATegra: Multi-Omics Data Integration - A Conceptual Scheme With a Bioinformatics Pipeline.
Front Genet. 2021 Mar 4;12:620453. doi: 10.3389/fgene.2021.620453. eCollection 2021.
5
Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry.
Mass Spectrom Rev. 2019 Aug;38(4-5):356-379. doi: 10.1002/mas.21586. Epub 2019 Jan 3.
6
A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma.
Nat Cell Biol. 2018 Oct;20(10):1203-1214. doi: 10.1038/s41556-018-0183-3. Epub 2018 Sep 10.
8
Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature.
Cancer Genomics Proteomics. 2017 Sep-Oct;14(5):315-327. doi: 10.21873/cgp.20042.
9
ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.
EMBO J. 2017 Jun 1;36(11):1493-1512. doi: 10.15252/embj.201695429. Epub 2017 Mar 10.
10
Capturing and identification of differentially expressed fucome by a gel free and label free approach.
J Chromatogr B Analyt Technol Biomed Life Sci. 2015 May 1;989:112-21. doi: 10.1016/j.jchromb.2015.03.006. Epub 2015 Mar 14.

本文引用的文献

1
Glycoproteomic analysis of glioblastoma stem cell differentiation.
J Proteome Res. 2011 Jan 7;10(1):330-8. doi: 10.1021/pr101158p. Epub 2010 Dec 16.
3
Quantitative proteomic profiling studies of pancreatic cancer stem cells.
J Proteome Res. 2010 Jul 2;9(7):3394-402. doi: 10.1021/pr100231m.
4
Role of glycans and glycosyltransferases in the regulation of Notch signaling.
Glycobiology. 2010 Aug;20(8):931-49. doi: 10.1093/glycob/cwq053. Epub 2010 Apr 5.
6
Role of glycosylation of Notch in development.
Semin Cell Dev Biol. 2010 Aug;21(6):638-45. doi: 10.1016/j.semcdb.2010.03.003. Epub 2010 Mar 10.
7
The functional role of Notch signaling in human gliomas.
Neuro Oncol. 2010 Feb;12(2):199-211. doi: 10.1093/neuonc/nop022. Epub 2009 Dec 14.
10
Cancer stem cells: cell culture, markers, and targets for new therapies.
J Cell Biochem. 2009 Dec 1;108(5):1031-8. doi: 10.1002/jcb.22350.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验