Suppr超能文献

张力介导的糖萼-整合素反馈回路促进间充质样胶质母细胞瘤。

A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma.

机构信息

Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.

Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea.

出版信息

Nat Cell Biol. 2018 Oct;20(10):1203-1214. doi: 10.1038/s41556-018-0183-3. Epub 2018 Sep 10.

Abstract

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx. Studies showed that a bulky glycocalyx potentiates integrin mechanosignalling and tissue tension and promotes a mesenchymal, stem-like phenotype in GBMs. Gain- and loss-of-function studies implicated integrin mechanosignalling as an inducer of GBM growth, survival, invasion and treatment resistance, and a mesenchymal, stem-like phenotype. Mesenchymal-like GBMs were highly contractile and expressed elevated levels of glycoproteins that expanded their glycocalyx, and they were surrounded by a stiff extracellular matrix that potentiated integrin mechanosignalling. Our findings suggest that there is a dynamic and reciprocal link between integrin mechanosignalling and a bulky glycocalyx, implying a causal link towards a mesenchymal, stem-like phenotype in GBMs. Strategies to ameliorate GBM tissue tension offer a therapeutic approach to reduce mortality due to GBM.

摘要

多形性胶质母细胞瘤(GBMs)是复发性致命性脑肿瘤。复发性 GBM 常表现出间质、干细胞样表型,这可以解释它们对治疗的耐药性。分析表明,复发性 GBM 张力增加,并表达高水平的糖蛋白,增加糖萼的体积。研究表明,体积庞大的糖萼增强了整合素机械信号转导和组织张力,并促进了 GBM 中的间质、干细胞样表型。增益和缺失功能研究表明,整合素机械信号转导是 GBM 生长、存活、侵袭和治疗耐药的诱导因素,也是间质、干细胞样表型的诱导因素。间充质样 GBM 具有高度的收缩性,并表达高水平的糖蛋白,使其糖萼扩张,它们被坚硬的细胞外基质包围,增强了整合素机械信号转导。我们的研究结果表明,整合素机械信号转导和庞大的糖萼之间存在动态和相互联系,暗示了 GBM 中向间质、干细胞样表型的因果关系。减轻 GBM 组织张力的策略为降低 GBM 死亡率提供了一种治疗方法。

相似文献

1
A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma.
Nat Cell Biol. 2018 Oct;20(10):1203-1214. doi: 10.1038/s41556-018-0183-3. Epub 2018 Sep 10.
2
Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma.
Cancer Lett. 2018 Nov 1;436:10-21. doi: 10.1016/j.canlet.2018.08.004. Epub 2018 Aug 10.
8
Efficacy of EGFR plus TNF inhibition in a preclinical model of temozolomide-resistant glioblastoma.
Neuro Oncol. 2019 Dec 17;21(12):1529-1539. doi: 10.1093/neuonc/noz127.

引用本文的文献

3
Membrane-Inserting α‑Lipid Polymers: Understanding Lipid Membrane Insertion and Effect on Membrane Fluidity.
Chem Mater. 2025 Jul 18;37(15):5621-5635. doi: 10.1021/acs.chemmater.5c00658. eCollection 2025 Aug 12.
4
Mechanical regulation of extracellular vesicle activity during tumour progression.
Nat Biomed Eng. 2025 Aug 6. doi: 10.1038/s41551-025-01446-0.
5
Bioprinting of GelMA-Based Hydrogels to Aid in Creation of Biomimetic 3D Models for Glioblastoma.
Micromachines (Basel). 2025 May 29;16(6):654. doi: 10.3390/mi16060654.
6
Role and potential therapeutic strategies of matrix mechanics for optimizing tumor radiotherapy.
Mechanobiol Med. 2023 Dec 19;2(1):100037. doi: 10.1016/j.mbm.2023.100037. eCollection 2024 Mar.
7
Exploring New Frontiers: Alternative Breast Cancer Treatments Through Glycocalyx Research.
Breast J. 2025 May 22;2025:9952727. doi: 10.1155/tbj/9952727. eCollection 2025.
8
Tissue mechanics in tumor heterogeneity and aggression.
Trends Cancer. 2025 Aug;11(8):806-824. doi: 10.1016/j.trecan.2025.04.004. Epub 2025 Apr 29.
9
Visualizing the endothelial glycocalyx in human glioma vasculature.
Brain Tumor Pathol. 2025 Apr;42(2):33-42. doi: 10.1007/s10014-025-00498-z. Epub 2025 Mar 4.
10
Forcing the code: tension modulates signaling to drive morphogenesis and malignancy.
Genes Dev. 2025 Jan 7;39(1-2):163-181. doi: 10.1101/gad.352110.124.

本文引用的文献

2
Hydroxylamine Chemical Digestion for Insoluble Extracellular Matrix Characterization.
J Proteome Res. 2017 Nov 3;16(11):4177-4184. doi: 10.1021/acs.jproteome.7b00527.
3
Inhibition of FAK kinase activity preferentially targets cancer stem cells.
Oncotarget. 2017 Jun 16;8(31):51733-51747. doi: 10.18632/oncotarget.18517. eCollection 2017 Aug 1.
5
Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.
Stem Cells Transl Med. 2017 Jan;6(1):131-138. doi: 10.5966/sctm.2016-0109. Epub 2016 Jul 28.
6
Tissue mechanics regulate brain development, homeostasis and disease.
J Cell Sci. 2017 Jan 1;130(1):71-82. doi: 10.1242/jcs.191742.
7
Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression.
Nat Cell Biol. 2016 Dec;18(12):1336-1345. doi: 10.1038/ncb3429. Epub 2016 Nov 7.
8
Glycans define the stemness of naïve and primed pluripotent stem cells.
Glycoconj J. 2017 Dec;34(6):737-747. doi: 10.1007/s10719-016-9740-9. Epub 2016 Oct 28.
10
Protein Analysis of Glioblastoma Primary and Posttreatment Pairs Suggests a Mesenchymal Shift at Recurrence.
J Neuropathol Exp Neurol. 2016 Oct;75(10):925-935. doi: 10.1093/jnen/nlw068. Epub 2016 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验