Department of Physics and Astronomy, Ghent University, Belgium.
Phys Rev Lett. 2011 Aug 12;107(7):070601. doi: 10.1103/PhysRevLett.107.070601. Epub 2011 Aug 10.
We develop a new algorithm based on the time-dependent variational principle applied to matrix product states to efficiently simulate the real- and imaginary-time dynamics for infinite one-dimensional quantum lattices. This procedure (i) is argued to be optimal, (ii) does not rely on the Trotter decomposition and thus has no Trotter error, (iii) preserves all symmetries and conservation laws, and (iv) has low computational complexity. The algorithm is illustrated by using both an imaginary-time and a real-time example.
我们基于应用于矩阵乘积态的时变变分原理开发了一种新算法,以有效地模拟无限一维量子晶格的实时间和虚时间动力学。该方法 (i) 被认为是最优的,(ii) 不依赖于 Trotter 分解,因此没有 Trotter 误差,(iii) 保留了所有的对称性和守恒定律,以及 (iv) 具有低的计算复杂度。该算法通过使用一个虚时间和一个实时间的例子进行了说明。