Food & Bioproces Engineering Laboratory Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA.
Biosens Bioelectron. 2011 Nov 15;29(1):159-66. doi: 10.1016/j.bios.2011.08.011. Epub 2011 Aug 18.
A simple, fast, green and controllable approach was developed for electrochemical synthesis of a novel nanocomposite of electrochemically reduced graphene oxide (ERGO) and gold-palladium (1:1) bimetallic nanoparticles (AuPdNPs), without the aid of any reducing reagent. The electrochemical reduction efficiently removed oxygen-containing groups in ERGO, which was then modified with homogeneously dispersed AuPdNPs in a good size distribution. ERGO-AuPdNPs nanocomposite showed excellent biocompatibility, enhanced electron transfer kinetics and large electroactive surface area, and were highly sensitive and stable towards oxygen reduction. A biosensor was constructed by immobilizing glucose oxidase as a model enzyme on the nanocomposites for glucose detection through oxygen consumption during the enzymatic reaction. The biosensor had a detection limit of 6.9μM, a linear range up to 3.5mM and a sensitivity of 266.6μAmM(-1)cm(-2). It exhibited acceptable reproducibility and good accuracy with negligible interferences from common oxidizable interfering species. These characteristics make ERGO-AuPdNPs nanocomposite highly suitable for oxidase-based biosensing.
开发了一种简单、快速、绿色且可控的电化学方法,用于电化学合成新型氧化石墨烯(ERGO)和金钯(1:1)双金属纳米粒子(AuPdNPs)的纳米复合材料,无需任何还原剂。电化学还原有效地去除了 ERGO 中的含氧基团,然后用均匀分散的 AuPdNPs 对其进行修饰,得到了良好的尺寸分布。ERGO-AuPdNPs 纳米复合材料具有良好的生物相容性、增强的电子转移动力学和大的电化学活性表面积,对氧还原具有高灵敏度和稳定性。通过将葡萄糖氧化酶作为模型酶固定在纳米复合材料上,构建了用于葡萄糖检测的生物传感器,通过酶反应过程中的耗氧量进行检测。该生物传感器的检测限为 6.9μM,线性范围高达 3.5mM,灵敏度为 266.6μAmM(-1)cm(-2)。它表现出可接受的重现性和良好的准确性,几乎没有常见的可氧化干扰物质的干扰。这些特性使得 ERGO-AuPdNPs 纳米复合材料非常适合基于氧化酶的生物传感。