Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
J Appl Physiol (1985). 2011 Dec;111(6):1760-7. doi: 10.1152/japplphysiol.00737.2011. Epub 2011 Sep 8.
Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease.
气道高反应性(AHR)和重塑是哮喘和慢性阻塞性肺疾病的主要特征。由于一些患者对当前的治疗方法有抗药性,并发展为进行性气道重塑和 AHR 恶化,因此需要新的治疗靶点。哺乳动物雷帕霉素靶蛋白(mTOR)是细胞增殖和存活的关键调节剂。雷帕霉素作为 mTOR 抑制剂治疗过敏性哮喘模型可抑制炎症和 AHR,但尚不清楚雷帕霉素是否可以直接抑制气道重塑和 AHR,或者其治疗效果是否完全通过免疫抑制来介导。为了解决这个问题,我们利用转化生长因子-α(TGF-α)转基因小鼠,这些小鼠缺乏转录因子早期生长反应-1(Egr-1)(TGF-α Tg/Egr-1(ko/ko)小鼠)。正如之前报道的那样,这些小鼠在没有改变的肺部炎症的情况下,会发展出气道平滑肌增厚和 AHR。在这项研究中,在肺特异性 TGF-α诱导 3 周后,TGF-α Tg/Egr-1(ko/ko)小鼠体重减轻并出现严重的 AHR。雷帕霉素治疗可预防体重减轻、气道壁增厚、肺功能异常以及在 TGF-α 诱导 3 周后气道对乙酰甲胆碱的阻力增加。在接受雷帕霉素治疗的转基因小鼠中,组织阻尼和气道弹性的增加也减弱。在接受强力霉素治疗 8 周的 TGF-α/Egr-1(ko/ko)小鼠中,严重的气道重塑发生。α-平滑肌肌动蛋白免疫染色和形态计量分析表明,雷帕霉素治疗可防止小气道周围的气道平滑肌增厚。戊四酮染色、肺胶原和纤维连接蛋白 mRNA 水平的评估表明,雷帕霉素也可减弱 TGF-α 表达 8 周诱导的纤维化途径。因此,雷帕霉素减少了气道重塑和 AHR,表明 mTOR 信号通路在 TGF-α 诱导/EGF 受体介导的反应性气道疾病中具有重要作用。