Machine Learning Laboratory, Berlin Institute of Technology Berlin, Germany.
Front Neurosci. 2011 Aug 22;5:99. doi: 10.3389/fnins.2011.00099. eCollection 2011.
Brain-computer interfaces (BCIs) based on event related potentials (ERPs) strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using auditory evoked potentials for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low) and direction (left/middle/right) and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single nine-class decision plus two additional decisions to confirm a spelled word. This paradigm - called PASS2D - was investigated in an online study with 12 healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits/min) which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like people with amyotrophic lateral sclerosis disease in a late stage.
脑-机接口(BCI)基于事件相关电位(ERPs),旨在提供独立于肌肉活动的通信途径。虽然大多数基于视觉 ERP 的 BCI 范式需要用户很好地控制注视方向,但基于听觉的 BCI 范式则克服了这一限制。本研究提出了一种使用听觉诱发电位的新方法,以多类文本拼写应用为例。为了控制 ERP 拼写器,BCI 用户将注意力集中在二维听觉刺激上,这些刺激在音调和方向(左/中/右)上都有所变化,并通过耳机呈现。由此产生的九个不同的控制信号被用来驱动预测文本输入系统。它使用户可以通过单次九类决策加两个额外的决策来拼写一个字母,从而确认拼写的单词。这种称为 PASS2D 的范式在一项有 12 名健康参与者的在线研究中进行了调查。用户的平均拼写速度超过每分钟 0.8 个字符(3.4 位/分钟),这使得 PASS2D 成为一种有竞争力的方法。它可以为处于晚期的肌萎缩性侧索硬化症等疾病的 BCI 终端用户丰富现有的 ERP 范式工具包。