Suppr超能文献

Ag/TiO₂/石墨烯纳米复合材料的制备及其可见光光催化活性。

Preparation and visible light photocatalytic activity of Ag/TiO₂/graphene nanocomposite.

机构信息

Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.

出版信息

Nanoscale. 2011 Oct 5;3(10):4411-7. doi: 10.1039/c1nr10604j. Epub 2011 Sep 12.

Abstract

Great efforts have been made to develop efficient visible light-activated photocatalysts in recent years. In this work, a new nanocomposite consisting of anatase TiO(2), Ag, and graphene was prepared for use as a visible light-activated photocatalyst, which exhibited significantly increased visible light absorption and improved photocatalytic activity, compared with Ag/TiO(2) and TiO(2)/graphene nanocomposites. The increased absorption in visible light region is originated from the strong interaction between TiO(2) nanoparticles and graphene, as well as the surface plasmon resonance effect of Ag nanoparticles that are mainly adsorbed on the surface of TiO(2) nanoparticles. The highly efficient photocatalytic activity is associated with the strong adsorption ability of graphene for aromatic dye molecules, fast photogenerated charge separation due to the formation of Schottky junction between TiO(2) and Ag nanoparticles and the high electron mobility of graphene sheets, as well as the broad absorption in the visible light region. This work suggests that the combination of the excellent electrical properties of graphene and the surface plasmon resonance effect of noble metallic nanoparticles provides a versatile strategy for the synthesis of novel and efficient visible light-activated photocatalysts.

摘要

近年来,人们为开发高效的可见光激活光催化剂做出了巨大努力。在这项工作中,制备了一种由锐钛矿 TiO(2)、Ag 和石墨烯组成的新型纳米复合材料,用作可见光激活光催化剂,与 Ag/TiO(2)和 TiO(2)/石墨烯纳米复合材料相比,其可见光吸收显著增加,光催化活性得到提高。可见光区域吸收的增加源于 TiO(2)纳米粒子与石墨烯之间的强烈相互作用,以及主要吸附在 TiO(2)纳米粒子表面的 Ag 纳米粒子的表面等离子体共振效应。高效的光催化活性与石墨烯对芳香族染料分子的强吸附能力、由于 TiO(2)和 Ag 纳米粒子之间形成肖特基结以及石墨烯片的高电子迁移率而导致的光生电荷快速分离有关,以及在可见光区域的宽吸收。这项工作表明,石墨烯的优异导电性和贵金属纳米粒子的表面等离子体共振效应的结合为合成新型高效可见光激活光催化剂提供了一种通用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验