Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec, Canada.
Nucleic Acids Res. 2012 Jan;40(1):258-69. doi: 10.1093/nar/gkr740. Epub 2011 Sep 12.
All organisms have evolved specialized DNA repair mechanisms in order to protect their genome against detrimental lesions such as DNA double-strand breaks. In plant organelles, these damages are repaired either through recombination or through a microhomology-mediated break-induced replication pathway. Whirly proteins are modulators of this second pathway in both chloroplasts and mitochondria. In this precise pathway, tetrameric Whirly proteins are believed to bind single-stranded DNA and prevent spurious annealing of resected DNA molecules with other regions in the genome. In this study, we add a new layer of complexity to this model by showing through atomic force microscopy that tetramers of the potato Whirly protein WHY2 further assemble into hexamers of tetramers, or 24-mers, upon binding long DNA molecules. This process depends on tetramer-tetramer interactions mediated by K67, a highly conserved residue among plant Whirly proteins. Mutation of this residue abolishes the formation of 24-mers without affecting the protein structure or the binding to short DNA molecules. Importantly, we show that an Arabidopsis Whirly protein mutated for this lysine is unable to rescue the sensitivity of a Whirly-less mutant plant to a DNA double-strand break inducing agent.
所有生物体都进化出了专门的 DNA 修复机制,以保护其基因组免受 DNA 双链断裂等有害损伤。在植物细胞器中,这些损伤可以通过重组或通过微同源介导的断裂诱导复制途径来修复。Whirly 蛋白是叶绿体和线粒体中这第二种途径的调节剂。在这个精确的途径中,四聚体 Whirly 蛋白被认为可以结合单链 DNA,并防止切除的 DNA 分子与基因组中的其他区域发生错误退火。在这项研究中,我们通过原子力显微镜显示,马铃薯 Whirly 蛋白 WHY2 的四聚体在结合长 DNA 分子后进一步组装成四聚体的六聚体,或 24 聚体,从而为该模型增加了一个新的复杂性层次。这个过程依赖于 K67 介导的四聚体-四聚体相互作用,K67 是植物 Whirly 蛋白中高度保守的残基。该残基的突变会破坏 24 聚体的形成,而不影响蛋白结构或与短 DNA 分子的结合。重要的是,我们表明,拟南芥 Whirly 蛋白中这个赖氨酸的突变使其无法挽救 Whirly 缺失突变体植物对 DNA 双链断裂诱导剂的敏感性。