Center for Plant Molecular Biology, Plant Physiology and Biophysical Chemistry, University of Tübingen, Auf der Morgenstelle 1, 72076 Tuebingen, Germany.
Mol Plant. 2012 Jan;5(1):14-26. doi: 10.1093/mp/ssr075. Epub 2011 Sep 13.
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
光谱显微镜是荧光显微镜与空间分辨光谱技术的结合,为活体生物的功能细胞生物学提供了新的令人兴奋的工具。本综述重点介绍了在原生组织环境中研究活体植物细胞的光谱显微镜应用的最新进展。光谱显微镜方法的应用导致了快速信号响应途径的最新发现,用于植物细胞中质膜的油菜素内酯受体 BRI1。此外,通过不同光学和光谱读数(如荧光寿命(FLT))的相关分析,确定了不同植物细胞类型对环境或内源性刺激的响应能力。此外,还开发了一种新的光谱显微镜技术,荧光强度衰减形状分析显微镜(FIDSAM)。FIDSAM 能够以高空间分辨率对低表达的荧光标记蛋白进行成像,并避免了对自发荧光伪影的误解。此外,FIDSAM 基于Förster 共振能量转移(FRET)为基础,提供了一种非常有效和敏感的工具,用于定性和定量测定蛋白质-蛋白质相互作用。最后,我们报告了使用高分辨率、空间分辨荧光光谱在室温下对活体拟南芥植物叶绿体中光系统 I 和 II(PSI/PSII)的定量分析。使用这种技术,不仅可以测量 PSI/PSII 的比值,还可以证明野生型和碳水化合物缺乏型植物在不同光照条件下适应 PSI/PSII 比值的差异能力。总之,通过使用光谱显微镜方法,标准显微镜图像的信息量扩展了几个维度。因此,可以解决新的细胞生理和分子主题,并在活体植物中获得对分子和亚细胞过程的有价值的见解。