Adak Subrata, Aulak Kulwant S, Stuehr Dennis J
Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
J Biol Chem. 2002 May 3;277(18):16167-71. doi: 10.1074/jbc.M201136200. Epub 2002 Feb 20.
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS.
一氧化氮合酶(NOSs)广泛分布于原核生物和真核生物中,在生理学中具有多种功能。最近的基因组测序揭示了细菌中存在类似 NOS 的蛋白质,但这些蛋白质是否产生一氧化氮尚不清楚。因此,我们从枯草芽孢杆菌中克隆、表达并纯化了一种类似 NOS 的蛋白质(bsNOS),并在多周转和单周转反应中对其催化参数进行了表征。bsNOS 是二聚体,以与哺乳动物 NOS 相似的亲和力结合 L-精氨酸和 6R-四氢生物蝶呤,并且在与 NADPH 和哺乳动物 NOS 还原酶结构域一起孵育时从 L-精氨酸产生亚硝酸盐。停流分析表明,在存在精氨酸或反应中间体 N-羟基-L-精氨酸的情况下,亚铁 bsNOS 与 O₂反应形成瞬时血红素 Fe(II)O₂物种。在后一种情况下,Fe(II)O₂物种的消失在动力学上和定量上与瞬时血红素 Fe(III)NO 产物的形成相关联,然后该产物解离形成高铁 bsNOS。这种行为与哺乳动物 NOS 酶相似,明确表明 bsNOS 可以产生 NO。NO 的形成需要结合的四氢蝶呤,并且该辅因子的动力学效应与其在反应过程中向 Fe(II)O₂中间体提供电子一致。bsNOS 中血红素 Fe(III)NO 产物的解离比哺乳动物 NOS 中慢得多。这种限制允许蛋白质氧化还原伴侣进行高铁血红素还原的速率,并强调了在 bsNOS 中使用四氢蝶呤电子供体的实用性。