Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Biochemistry. 2012 Oct 30;51(43):8514-29. doi: 10.1021/bi300863a. Epub 2012 Oct 15.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.
甘油醛-3-磷酸脱氢酶(GAPDH)是一种糖酵解酶,也具有转录调控、氧化应激、囊泡运输和细胞凋亡的功能。由于 GAPDH 是细胞血红素插入诱导型一氧化氮合酶所必需的[Chakravarti,R.等。(2010)Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009],我们广泛研究了 GAPDH 的血红素结合特性。亚化学计量的高铁血红素与 GAPDH 结合(每个 GAPDH 四聚体一个血红素)形成低自旋配合物,其紫外可见光谱的最大值在 362、418 和 537nm 处,当还原为亚铁时,最大值在 424、527 和 559nm 处。在 10°C 时,高铁血红素的结合和解离速率常数如下:k(on) = 17800 M(-1) s(-1),k(off1) = 7.0 × 10(-3) s(-1),k(off2) = 3.3 × 10(-4) s(-1)(近似亲和力为 19-390nM)。亚铁血红素与 GAPDH 的结合较差,其 k(off)为 4.2 × 10(-3) s(-1)。GAPDH 的高铁、亚铁和亚铁-CO 配合物的磁圆二色性、共振拉曼和电子顺磁共振光谱数据表明,血红素与 His 作为近端配体双配位。在高铁复合物中,远端配体没有被 CN(-)或 N(3)(-)取代,但在亚铁复合物中可以被 CO 以 1.75 s(-1)的速度取代(对于>0.2mM CO)。血红素类似物的研究揭示了对配位金属和卟啉环结构的选择性。在细菌中表达兔 GAPDH 并在 δ-氨基酮戊酸存在的情况下,从细菌中分离出 GAPDH-血红素复合物。我们发现血红素与 GAPDH 结合,扩大了该蛋白的潜在作用。血红素与 GAPDH 的结合强度、选择性、可逆性和氧化还原敏感性与其在细胞中进行血红素感应或血红素伴侣样功能一致。