Laboratory of Computational Chemistry and Biochemistry, EPFL, CH-1015 Lausanne, Switzerland.
Biotechnol Bioeng. 2012 Feb;109(2):572-82. doi: 10.1002/bit.23334. Epub 2011 Sep 28.
Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate.
微生物生产所需的化合物为可再生能源的发展提供了一个有效的框架。要想与传统化学相竞争,一个要求是充分利用微生物的能力,以高产率和高周转率生产目标化合物。我们使用集成计算方法来生成和量化新型生物合成途径的性能,这些途径包含高度优化的催化剂。工程化一条新的反应途径需要在多个层面上解决可行性问题,这涉及到在尊重原子尺度上关键化学现象的同时处理大规模生化网络的复杂性。为了应对这一多层面的挑战,我们的策略将基于知识的代谢工程方法与计算化学方法相结合。通过连接多个学科,我们提供了一个完整的计算框架,可以加速新型生物合成生产途径的发现和实施。通过这种方法,我们已经确定并优化了一条从丙酮酸生产 3HP 的新型生物合成途径。