Department of Genetics and Evolution, Faculty of Science, University of Geneva, Sciences III, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
Eur J Neurosci. 2011 Sep;34(6):847-62. doi: 10.1111/j.1460-9568.2011.07829.x.
Cnidarians belong to the first phylum differentiating a nervous system, thus providing suitable model systems to trace the origins of neurogenesis. Indeed corals, sea anemones, jellyfish and hydra contract, swim and catch their food thanks to sophisticated nervous systems that share with bilaterians common neurophysiological mechanisms. However, cnidarian neuroanatomies are quite diverse, and reconstructing the urcnidarian nervous system is ambiguous. At least a series of characters recognized in all classes appear plesiomorphic: (1) the three cell types that build cnidarian nervous systems (sensory-motor cells, ganglionic neurons and mechanosensory cells called nematocytes or cnidocytes); (2) an organization of nerve nets and nerve rings [those working as annular central nervous system (CNS)]; (3) a neuronal conduction via neurotransmitters; (4) a larval anterior sensory organ required for metamorphosis; (5) a persisting neurogenesis in adulthood. By contrast, the origin of the larval and adult neural stem cells differs between hydrozoans and other cnidarians; the sensory organs (ocelli, lens-eyes, statocysts) are present in medusae but absent in anthozoans; the electrical neuroid conduction is restricted to hydrozoans. Evo-devo approaches might help reconstruct the neurogenic status of the last common cnidarian ancestor. In fact, recent genomic analyses show that if most components of the postsynaptic density predate metazoan origin, the bilaterian neurogenic gene families originated later, in basal metazoans or as eumetazoan novelties. Striking examples are the ParaHox Gsx, Pax, Six, COUP-TF and Twist-type regulators, which seemingly exert neurogenic functions in cnidarians, including eye differentiation, and support the view of a two-step process in the emergence of neurogenesis.
刺胞动物属于第一个分化出神经系统的门,因此提供了合适的模式系统来追踪神经发生的起源。事实上,珊瑚、海葵、水母和水螅通过复杂的神经系统来收缩、游泳和捕捉食物,这些神经系统与两侧对称动物共享共同的神经生理机制。然而,刺胞动物的神经解剖结构非常多样化,重建原始刺胞动物神经系统是模糊的。至少有一系列在所有类群中都被识别的特征是原始的:(1)构建刺胞动物神经系统的三种细胞类型(感觉运动细胞、神经节神经元和机械感觉细胞,称为刺细胞或刺胞);(2)神经网和神经环的组织[作为环形中枢神经系统(CNS)工作];(3)通过神经递质进行神经元传导;(4)幼虫的前感觉器官,这是变态所必需的;(5)成年期持续的神经发生。相比之下,水螅动物和其他刺胞动物的幼虫和成年神经干细胞的起源不同;感觉器官(眼点、晶状体眼、平衡囊)存在于水母中,但在珊瑚中不存在;电神经原传导仅限于水螅动物。演化发育生物学方法可能有助于重建最后一个共同刺胞动物祖先的神经发生状态。事实上,最近的基因组分析表明,如果突触后密度的大多数成分早于后生动物起源,那么两侧对称动物的神经发生基因家族起源较晚,在基底后生动物或后生动物新出现。引人注目的例子是ParaHox Gsx、Pax、Six、COUP-TF 和 Twist 型调节剂,它们似乎在刺胞动物中发挥神经发生功能,包括眼睛分化,并支持神经发生出现的两步过程的观点。