Olivera-Pasilio Valentina, Lasserre Moira, Castelló María E
Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.
Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay.
Front Neurosci. 2017 Aug 17;11:437. doi: 10.3389/fnins.2017.00437. eCollection 2017.
Adult neurogenesis, an essential mechanism of brain plasticity, enables brain development along postnatal life, constant addition of new neurons, neuronal turnover, and/or regeneration. It is amply distributed but negatively modulated during development and along evolution. Widespread cell proliferation, high neurogenic, and regenerative capacities are considered characteristics of teleost brains during adulthood. These anamniotes are promising models to depict factors that modulate cell proliferation, migration, and neurogenesis, and might be intervened to promote brain plasticity in mammals. Nevertheless, the migration path of derived cells to their final destination was not studied in various teleosts, including most weakly electric fish. In this group adult brain morphology is attributed to sensory specialization, involving the concerted evolution of peripheral electroreceptors and electric organs, encompassed by the evolution of neural networks involved in electrosensory information processing. In wave type gymnotids adult brain morphology is proposed to result from lifelong region specific cell proliferation and neurogenesis. Consistently, pulse type weakly electric gymnotids and mormyrids show widespread distribution of proliferation zones that persists in adulthood, but their neurogenic potential is still unknown. Here we studied the migration process and differentiation of newborn cells into the neuronal phenotype in the pulse type gymnotid . Pulse labeling of S-phase cells with 5-Chloro-2'-deoxyuridine thymidine followed by 1 to 180 day survivals evidenced long distance migration of newborn cells from the rostralmost telencephalic ventricle to the olfactory bulb, and between layers of all cerebellar divisions. Shorter migration appeared in the tectum opticum and torus semicircularis. In many brain regions, derived cells expressed early neuronal markers doublecortin (chase: 1-30 days) and HuC/HuD (chase: 7-180 days). Some newborn cells expressed the mature neuronal marker tyrosine hydroxylase in the subpallium (chase: 90 days) and olfactory bulb (chase: 180 days), indicating the acquisition of a mature neuronal phenotype. Long term CldU labeled newborn cells of the granular layer of the corpus cerebelli were also retrogradely labeled "," suggesting their insertion into the neural networks. These findings evidence the neurogenic capacity of telencephalic, mesencephalic, and rhombencephalic brain proliferation zones in , supporting the phylogenetic conserved feature of adult neurogenesis and its functional significance.
成年神经发生是大脑可塑性的一种基本机制,它使得大脑在出生后的生命过程中持续发育,不断增添新的神经元、进行神经元更替和/或再生。它分布广泛,但在发育过程和进化过程中受到负调控。广泛的细胞增殖、高度的神经发生能力和再生能力被认为是硬骨鱼成年期大脑的特征。这些无羊膜动物是描绘调节细胞增殖、迁移和神经发生的因素的有前景的模型,并且可能通过干预来促进哺乳动物的大脑可塑性。然而,包括大多数弱电鱼在内的各种硬骨鱼中,衍生细胞向其最终目的地的迁移路径尚未得到研究。在这一类群中,成年大脑形态归因于感觉特化,涉及外周电感受器和电器官的协同进化,以及参与电感觉信息处理的神经网络的进化。在波型裸背电鳗中,成年大脑形态被认为是由终生区域特异性细胞增殖和神经发生导致的。一致地,脉冲型弱电裸背电鳗和长颌鱼显示增殖区广泛分布,且在成年期持续存在,但其神经发生潜力仍然未知。在这里,我们研究了脉冲型裸背电鳗中新生细胞的迁移过程以及它们向神经元表型的分化。用5-氯-2'-脱氧尿苷胸苷对S期细胞进行脉冲标记,然后存活1至180天,结果表明新生细胞从最前端的端脑脑室远距离迁移到嗅球,以及所有小脑叶各层之间。视顶盖和半规管的迁移距离较短。在许多脑区,衍生细胞表达早期神经元标记物双皮质素(追踪期:1 - 3天)和HuC/HuD(追踪期:7 - 天)。一些新生细胞在大脑皮质下(追踪期:90天)和嗅球(追踪期:180天)表达成熟神经元标记物酪氨酸羟化酶,表明获得了成熟的神经元表型。长期用CldU标记的小脑颗粒层新生细胞也被逆行标记,这表明它们已融入神经网络。这些发现证明了端脑、中脑和后脑增殖区的神经发生能力,支持了成年神经发生的系统发育保守特征及其功能意义。