Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS One. 2011;6(9):e23911. doi: 10.1371/journal.pone.0023911. Epub 2011 Sep 8.
Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.
生物材料涵盖了从埃(Angstrom,长度单位,10^-10 米)到米的所有尺度,通常由简单构建块的复杂层次组装而成。在这里,我们通过开发所谓的“olog”,应用范畴论来描述生物蛋白质材料的结构和由此产生的功能特性。olog 有点像“概念网络”或“语义网络”,但它遵循基于范畴论的严格数学公式。这种关键差异确保了 olog 是明确的、高度适应进化和变化的,并且适合与其他 olog 共享概念。我们考虑了受轴向拉伸的β螺旋和淀粉样蛋白样蛋白丝的简单情况,并开发了它们的结构和由此产生的机械特性的 olog 表示。我们还构建了一个社交网络的表示,其中人们向其最近的邻居发送短信,并作为一个团队来执行任务。我们表明,蛋白质的 olog 和社交网络的 olog 具有相同的范畴论表示,并进一步详细阐述了它们之间的相似性或同构性。这里呈现的示例表明,复杂系统的固有性质,特别是包括不同层次结构之间的结构和功能之间的精确关系,可以通过 olog 有效地表示。这反过来又允许在不同的材料或应用领域之间进行比较研究,并导致在从头设计层次系统时获得功能的新方法。我们讨论了使用 olog 作为分析和设计工具来描述复杂生物材料的机会和挑战,以及这种方法在工程、生命科学和医学中的潜在影响。