Mathematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS One. 2012;7(1):e24274. doi: 10.1371/journal.pone.0024274. Epub 2012 Jan 31.
In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research.
在本文中,我们介绍了 olog,或本体论日志,这是一种用于知识表示 (KR) 的范畴论模型。基于形式数学,olog 可以以其他 KR 模型(如语义网络)无法的方式进行严格的形式化和交叉比较。olog 类似于关系数据库模式;实际上,如果需要,olog 可以用作数据存储库。与一般难以创建或修改的数据库模式不同,olog 旨在足够用户友好,以至于编写或重新配置 olog 是一件理所当然的事情,而不是一件困难的事情。希望学习编写 olog 比学习数据库定义语言简单得多,尽管它们很相似。我们仔细描述了 olog,并通过许多示例进行了说明。作为应用,我们展示了任何原始递归函数都可以用 olog 来描述。我们还展示了如何使用函子将 olog 对齐或连接成更大的网络。然后可以使用各种信息流和机构方法来整合局部和全局的世界观。最后,我们提供了未来研究的几个不同途径。