Suppr超能文献

DNA 的蛋白质材料工程。

Protein Materials Engineering with DNA.

出版信息

Acc Chem Res. 2019 Jul 16;52(7):1939-1948. doi: 10.1021/acs.accounts.9b00165. Epub 2019 Jun 14.

Abstract

Proteins are a class of nanoscale building block with remarkable chemical complexity and sophistication: their diverse functions, shapes, and symmetry as well as atomically monodisperse structures far surpass the range of conventional nanoparticles that can be accessed synthetically. The chemical topologies of proteins that drive their assembly into materials are central to their functions in nature. However, despite the importance of protein materials in biology, efforts to harness these building blocks synthetically to engineer new materials have been impeded by the chemical complexity of protein surfaces, making it difficult to reliably design protein building blocks that can be robustly transformed into targeted materials. Here we describe our work aimed at exploiting a simple but important concept: if one could exchange complex protein-protein interactions with well-defined and programmable DNA-DNA interactions, one could control the assembly of proteins into structurally well-defined oligomeric and polymeric materials and three-dimensional crystals. As a class of nanoscale building block, proteins with surface DNA modifications have a vast design space that exceeds what is practically and conceptually possible with their inorganic counterparts: the sequences of the DNA and protein and the chemical nature and position of DNA attachment all play roles in dictating the assembly behavior of protein-DNA conjugates. We summarize how each of these design parameters can influence structural outcome, beginning with proteins with a single surface DNA modification, where energy barriers between protein monomers can be tuned through the sequence and secondary structure of the oligonucleotide. We then explore challenges and progress in designing directional interactions and valency on protein surfaces. The directional binding properties of protein-DNA conjugates are ultimately imposed by the amino acid sequence of the protein, which defines the spatial distribution of DNA modification sites on the protein. Through careful design and mutagenesis, bivalent building blocks that bind directionally to form one-dimensional assemblies can be realized. Finally, we discuss the assembly of proteins densely modified with DNA into crystalline superlattices. At first glance, these protein building blocks display crystallization behavior remarkably similar to that of their DNA-functionalized inorganic nanoparticle counterparts, which allows design principles elucidated for DNA-guided nanoparticle crystallization to be used as predictive tools in determining structural outcomes in protein systems. Proteins additionally offer design handles that nanoparticles do not: unlike nanoparticles, the number and spatial distribution of DNA can be controlled through the protein sequence and DNA modification chemistry. Changing the spatial distributions of DNA can drive otherwise identical proteins down distinct crystallization pathways and yield building blocks with exotic distributions of DNA that crystallize into structures that are not yet attainable using isotropically functionalized particles. We highlight challenges in accessing other classes of architectures and establishing general design rules for DNA-mediated protein assembly. Harnessing surface DNA modifications to build protein materials creates many opportunities to realize new architectures and answer fundamental questions about DNA-modified nanostructures in both materials and biological contexts. Proteins with surface DNA modifications are a powerful class of nanomaterial building blocks for which the DNA and protein sequences and the nature of their conjugation dictate the material structure.

摘要

蛋白质是一类具有显著化学复杂性和精巧性的纳米级构建模块

它们的多种功能、形状和对称性以及原子单分散结构远远超过了可通过合成获得的常规纳米颗粒的范围。驱动蛋白质组装成材料的化学拓扑结构是其在自然界中功能的核心。然而,尽管蛋白质材料在生物学中具有重要意义,但由于蛋白质表面的化学复杂性,难以可靠地设计可转化为目标材料的蛋白质构建模块,从而阻碍了人们利用这些构建模块进行合成来设计新材料。在这里,我们描述了我们旨在利用一个简单但重要的概念的工作:如果可以用定义明确且可编程的 DNA-DNA 相互作用来取代复杂的蛋白质-蛋白质相互作用,那么就可以控制蛋白质组装成结构明确的低聚和聚合物材料以及三维晶体。作为一类纳米级构建模块,表面带有 DNA 修饰的蛋白质具有广阔的设计空间,远远超过了其无机对应物在实践和概念上的可能性:DNA 和蛋白质的序列以及 DNA 附着的化学性质和位置都在决定蛋白质-DNA 缀合物的组装行为方面发挥作用。我们总结了这些设计参数如何影响结构结果,首先从表面带有单个 DNA 修饰的蛋白质开始,其中寡核苷酸的序列和二级结构可以调节蛋白质单体之间的能量势垒。然后,我们探索了在蛋白质表面设计定向相互作用和价态的挑战和进展。蛋白质-DNA 缀合物的定向结合特性最终由蛋白质的氨基酸序列决定,该序列定义了 DNA 修饰位点在蛋白质上的空间分布。通过精心设计和突变,可以实现与一维组装定向结合的二价构建模块。最后,我们讨论了用 DNA 高度修饰的蛋白质组装成结晶超晶格。乍一看,这些蛋白质构建模块的结晶行为与经过 DNA 功能化的无机纳米颗粒对应物非常相似,这使得阐明的用于指导 DNA 引导的纳米颗粒结晶的设计原则可以用作确定蛋白质系统结构结果的预测工具。蛋白质还提供了纳米颗粒所没有的设计手段:与纳米颗粒不同,DNA 的数量和空间分布可以通过蛋白质序列和 DNA 修饰化学来控制。改变 DNA 的空间分布可以使原本相同的蛋白质沿着不同的结晶途径进行,并生成具有奇特 DNA 分布的构建模块,这些构建模块结晶成目前使用各向同性功能化颗粒无法获得的结构。我们强调了在获得其他结构类型和建立用于 DNA 介导的蛋白质组装的通用设计规则方面所面临的挑战。利用表面 DNA 修饰来构建蛋白质材料为实现新结构以及回答有关材料和生物环境中 DNA 修饰纳米结构的基本问题创造了许多机会。表面带有 DNA 修饰的蛋白质是一类强大的纳米材料构建模块,其 DNA 和蛋白质序列以及它们的结合性质决定了材料的结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验