Suppr超能文献

迈向基于生理学的疼痛测量:人类大脑活动模式可区分疼痛和非疼痛的热刺激。

Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation.

机构信息

Department of Anesthesia, Stanford University, Palo Alto, California, United States of America.

出版信息

PLoS One. 2011;6(9):e24124. doi: 10.1371/journal.pone.0024124. Epub 2011 Sep 13.

Abstract

Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-report. Because the inability to verbally communicate can prevent effective pain management, research efforts have focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain. Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI) and support vector machine (SVM) learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli (p<0.0000001). Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%, albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex, secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI) analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any communication from the person being tested. We outline tasks that should be completed to advance this approach toward use in clinical settings.

摘要

疼痛常常在没有可观察到的损伤的情况下存在;因此,疼痛评估的金标准长期以来一直是自我报告。由于无法进行口头交流可能会妨碍有效的疼痛管理,因此研究工作一直集中在开发一种无需依赖自我报告即可准确评估疼痛的工具上。之前的这些努力都未能成功地用基于生理学的、可替代自我报告的疼痛测量方法来取代自我报告。最近的神经影像学数据表明,功能磁共振成像(fMRI)和支持向量机(SVM)学习可以联合用于准确评估认知状态。因此,我们假设,经过 fMRI 数据训练的 SVM 可以在没有自我报告的情况下评估疼痛。在 fMRI 实验中,24 名参与者接受了疼痛和非疼痛的热刺激。我们使用其中的 8 名参与者,通过对大脑活动的全脑模式进行训练,使用线性 SVM 来区分这些刺激。我们通过对 16 名未用于训练的数据的个体进行测试,评估了经过训练的 SVM 模型的性能。全脑 SVM 能够以 81%的准确率区分疼痛和非疼痛刺激(p<0.0000001)。使用 SVM 超平面的距离作为置信度的度量,准确率进一步提高到 84%,尽管为此代价是排除了 15%的最难分类的刺激。SVM 的整体性能主要受到大脑中疼痛处理区域的活动的影响,包括初级体感皮层、次级体感皮层、脑岛、初级运动皮层和扣带皮层。感兴趣区域(ROI)分析表明,全脑活动模式比来自单个脑区的局部活动更能进行准确分类。我们的研究结果表明,使用 SVM 学习的 fMRI 可以在不需要被测试者进行任何交流的情况下评估疼痛。我们概述了应该完成的任务,以推进这种方法在临床环境中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ec/3172232/57362f32e59a/pone.0024124.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验