Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Hum Brain Mapp. 2012 Nov;33(11):2650-65. doi: 10.1002/hbm.21391. Epub 2011 Sep 20.
Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks.
行为和功能磁共振成像(fMRI)数据被结合起来,以推断学生在与智能辅导系统交互时的心理状态。16 名儿童在六天的时间里(第 0-5 天)与计算机导师互动,以解决线性方程的问题,第 1 天和第 5 天在 fMRI 扫描仪中进行。隐马尔可夫模型算法将学生行为模型与多体素成像模式数据相结合,以预测学生的心理状态。我们分别评估了算法预测解决问题序列中哪一步被执行以及该步骤是否被正确执行的能力。对于第 1 天,使用其他学生的数据模式来预测目标学生的心理状态。在第 5 天,通过添加有关目标学生第 1 天的行为和成像数据的信息,对这些预测进行了改进。成功跟踪心理状态取决于使用行为模型和多体素模式分析的组合,这说明了实时跟踪个体认知的综合方法的有效性,因为他们执行复杂任务。